These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33276213)

  • 1. Exploring the utility of EDA and skin temperature as individual physiological correlates of motion sickness.
    Smyth J; Birrell S; Woodman R; Jennings P
    Appl Ergon; 2021 Apr; 92():103315. PubMed ID: 33276213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a moving base driving simulator for motion sickness research.
    Talsma TMW; Hassanain O; Happee R; de Winkel KN
    Appl Ergon; 2023 Jan; 106():103897. PubMed ID: 36206673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Participant-Related Determinants of Simulator Sickness in a Physical Motion Car Rollover Simulation as Measured by the Simulator Sickness Questionnaire.
    Rzeźniczek P; Lipiak A; Bilski B; Laudańska-Krzemińska I; Cybulski M; Chawłowska E
    Int J Environ Res Public Health; 2020 Sep; 17(19):. PubMed ID: 32993081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion sickness in passenger vehicles during test track operations.
    Jones MLH; Le VC; Ebert SM; Sienko KH; Reed MP; Sayer JR
    Ergonomics; 2019 Oct; 62(10):1357-1371. PubMed ID: 31282785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogastrography in Autonomous Vehicles-An Objective Method for Assessment of Motion Sickness in Simulated Driving Environments.
    Gruden T; Popović NB; Stojmenova K; Jakus G; Miljković N; Tomažič S; Sodnik J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33466805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of adaptation to reduce simulator sickness in driving assessment and research.
    Domeyer JE; Cassavaugh ND; Backs RW
    Accid Anal Prev; 2013 Apr; 53():127-32. PubMed ID: 23416680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of simulated fog and motion on simulator sickness in a driving simulator and the duration of after-effects.
    Dziuda L; Biernacki MP; Baran PM; Truszczyński OE
    Appl Ergon; 2014 May; 45(3):406-12. PubMed ID: 23726466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mood and simulator sickness after truck simulator exposure.
    Biernacki MP; Dziuda L
    Int J Occup Med Environ Health; 2014 Apr; 27(2):278-92. PubMed ID: 24692072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulator sickness during driving simulation studies.
    Brooks JO; Goodenough RR; Crisler MC; Klein ND; Alley RL; Koon BL; Logan WC; Ogle JH; Tyrrell RA; Wills RF
    Accid Anal Prev; 2010 May; 42(3):788-96. PubMed ID: 20380904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving base driving simulators' potential for carsickness research.
    Kuiper OX; Bos JE; Diels C; Cammaerts K
    Appl Ergon; 2019 Nov; 81():102889. PubMed ID: 31422261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Visually Induced Motion Sickness on Emergency Braking Reaction Times in a Driving Simulator.
    Reinhard R; Tutulmaz E; Rutrecht HM; Hengstenberg P; Geissler B; Hecht H; Muttray A
    Hum Factors; 2019 Sep; 61(6):1004-1018. PubMed ID: 30860903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Young adult drivers' sensitivity to changes in speed and driving mode in a simple vehicle simulator.
    Min YK; Chung SC; You JH; Yi JH; Lee B; Tack GR; Chun JH; Park MS; Min BC
    Percept Mot Skills; 2006 Aug; 103(1):197-209. PubMed ID: 17037661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A preliminary study of MR sickness evaluation using visual motion aftereffect for advanced driver assistance systems.
    Nakajima S; Ino S; Ifukube T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3044-7. PubMed ID: 18002636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychophysiological evaluation of simulator sickness evoked by a graphic simulator.
    Min BC; Chung SC; Min YK; Sakamoto K
    Appl Ergon; 2004 Nov; 35(6):549-56. PubMed ID: 15374762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dropout during a driving simulator study: A survival analysis.
    Matas NA; Nettelbeck T; Burns NR
    J Safety Res; 2015 Dec; 55():159-69. PubMed ID: 26683559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Driving performance and susceptibility to simulator sickness: are they related?
    Mullen NW; Weaver B; Riendeau JA; Morrison LE; Bédard M
    Am J Occup Ther; 2010; 64(2):288-95. PubMed ID: 20437916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slower adaptation to driving simulator and simulator sickness in older adults.
    Kawano N; Iwamoto K; Ebe K; Aleksic B; Noda A; Umegaki H; Kuzuya M; Iidaka T; Ozaki N
    Aging Clin Exp Res; 2012 Jun; 24(3):285-9. PubMed ID: 23114558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of augmented visual environments for reducing sickness in autonomous vehicles.
    de Winkel KN; Pretto P; Nooij SAE; Cohen I; Bülthoff HH
    Appl Ergon; 2021 Jan; 90():103282. PubMed ID: 33065467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of a Virtual Older Driver Assessment with an On-Road Driving Test.
    Eramudugolla R; Price J; Chopra S; Li X; Anstey KJ
    J Am Geriatr Soc; 2016 Dec; 64(12):e253-e258. PubMed ID: 27770585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for reducing motion sickness susceptibility through training visuospatial ability - A two-part study.
    Smyth J; Jennings P; Bennett P; Birrell S
    Appl Ergon; 2021 Jan; 90():103264. PubMed ID: 32920224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.