These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33276376)

  • 1. Recent advances in network-based methods for disease gene prediction.
    Ata SK; Wu M; Fang Y; Ou-Yang L; Kwoh CK; Li XL
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33276376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks.
    Kim Y; Park JH; Cho YR
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CERENKOV3: Clustering and molecular network-derived features improve computational prediction of functional noncoding SNPs.
    Yao Y; Ramsey SA
    Pac Symp Biocomput; 2020; 25():535-546. PubMed ID: 31797625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting genome-wide association studies from statistical modelling to machine learning.
    Sun S; Dong B; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33126243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association study-based deep learning for survival prediction.
    Sun T; Wei Y; Chen W; Ding Y
    Stat Med; 2020 Dec; 39(30):4605-4620. PubMed ID: 32974946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Brief Bioinform; 2019 Jul; 20(4):1337-1357. PubMed ID: 29377981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of network link prediction in drug discovery.
    Abbas K; Abbasi A; Dong S; Niu L; Yu L; Chen B; Cai SM; Hasan Q
    BMC Bioinformatics; 2021 Apr; 22(1):187. PubMed ID: 33845763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning methods for pK
    Wu J; Kang Y; Pan P; Hou T
    Drug Discov Today; 2022 Dec; 27(12):103372. PubMed ID: 36167281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning approaches for predicting biomolecule-disease associations.
    Ding Y; Lei X; Liao B; Wu FX
    Brief Funct Genomics; 2021 Jul; 20(4):273-287. PubMed ID: 33554238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-to-end interpretable disease-gene association prediction.
    Li Y; Guo Z; Wang K; Gao X; Wang G
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 36987781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative information theoretic network analysis for genome-wide association study of aspirin exacerbated respiratory disease in Korean population.
    Wang S; Jeong HH; Kim D; Wee K; Park HS; Kim SH; Sohn KA
    BMC Med Genomics; 2017 May; 10(Suppl 1):31. PubMed ID: 28589859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standard machine learning approaches outperform deep representation learning on phenotype prediction from transcriptomics data.
    Smith AM; Walsh JR; Long J; Davis CB; Henstock P; Hodge MR; Maciejewski M; Mu XJ; Ra S; Zhao S; Ziemek D; Fisher CK
    BMC Bioinformatics; 2020 Mar; 21(1):119. PubMed ID: 32197580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis.
    Li J; Liu Y; Zhang Z; Liu B; Wang Y
    Biomed Res Int; 2020; 2020():6248686. PubMed ID: 33354569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting non-small cell lung cancer-related genes by a new network-based machine learning method.
    Cai Y; Wu Q; Chen Y; Liu Y; Wang J
    Front Oncol; 2022; 12():981154. PubMed ID: 36203453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.
    Li B; Verma SS; Veturi YC; Verma A; Bradford Y; Haas DW; Ritchie MD
    Pac Symp Biocomput; 2018; 23():448-459. PubMed ID: 29218904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GWAS and drug targets.
    Cao C; Moult J
    BMC Genomics; 2014; 15 Suppl 4(Suppl 4):S5. PubMed ID: 25057111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.