These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33276619)

  • 1. Evaluation of Steels Susceptibility to Hydrogen Embrittlement: A Thermal Desorption Spectroscopy-Based Approach Coupled with Artificial Neural Network.
    Malitckii E; Fangnon E; Vilaça P
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33276619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel.
    Li S; Akiyama E; Yuuji K; Tsuzaki K; Uno N; Zhang B
    Sci Technol Adv Mater; 2010 Apr; 11(2):025005. PubMed ID: 27877333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging.
    Yang X; Yu H; Song C; Li L
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Hydrogen Embrittlement Susceptibility of Different Types of Advanced High-Strength Steels.
    Cho S; Kim GI; Ko SJ; Yoo JS; Jung YS; Yoo YH; Kim JG
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen embrittlement in ferritic steels.
    Martin ML; Connolly MJ; DelRio FW; Slifka AJ
    Appl Phys Rev; 2020; 7(4):. PubMed ID: 34122684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Tempering Temperature on Hydrogen Embrittlement of SCM440 Tempered Martensitic Steel.
    Kim SG; Kim JY; Hwang B
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37630000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Accuracy of Thermal Desorption Spectroscopy by Specimen Cooling during Measurement of Hydrogen Concentration in a High-Strength Steel.
    Fangnon E; Malitckii E; Yagodzinskyy Y; Vilaça P
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates.
    Chen YS; Lu H; Liang J; Rosenthal A; Liu H; Sneddon G; McCarroll I; Zhao Z; Li W; Guo A; Cairney JM
    Science; 2020 Jan; 367(6474):171-175. PubMed ID: 31919217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals.
    Merzlikin SV; Borodin S; Vogel D; Rohwerder M
    Talanta; 2015 May; 136():108-13. PubMed ID: 25702992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Relationship Analysis of Mechanical Properties with Mg Content and Heat Treatment Parameters in Al⁻7Si Alloys Using Artificial Neural Network.
    Wu X; Zhang H; Cui H; Ma Z; Song W; Yang W; Jia L; Zhang H
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30823684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Interaction between a Steel Microstructure and Hydrogen.
    Depover T; Laureys A; Pérez Escobar D; Van den Eeckhout E; Wallaert E; Verbeken K
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29710803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and Prediction of Hydrogen Embrittlement in fcc Stainless Steels and High Entropy Alloys.
    Zhou X; Tehranchi A; Curtin WA
    Phys Rev Lett; 2021 Oct; 127(17):175501. PubMed ID: 34739299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Embrittlement Evaluation of Micro Alloyed Steels by Means of
    Cabrini M; Sinigaglia E; Spinelli C; Tarenzi M; Testa C; Bolzoni FM
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31174341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum.
    Barrera O; Bombac D; Chen Y; Daff TD; Galindo-Nava E; Gong P; Haley D; Horton R; Katzarov I; Kermode JR; Liverani C; Stopher M; Sweeney F
    J Mater Sci; 2018; 53(9):6251-6290. PubMed ID: 31258179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Positive Role of Nanometric Molybdenum-Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels.
    Peral LB; Fernández-Pariente I; Colombo C; Rodríguez C; Belzunce J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive study on applications of artificial neural network in food process modeling.
    Bhagya Raj GVS; Dash KK
    Crit Rev Food Sci Nutr; 2022; 62(10):2756-2783. PubMed ID: 33327740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests.
    Beskopylny A; Lyapin A; Anysz H; Meskhi B; Veremeenko A; Mozgovoy A
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32471095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of True Stress at Hot Deformation of High Manganese Steel by Artificial Neural Network Modeling.
    Churyumov AY; Kazakova AA
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Investigation into the Dynamic Recrystallization (DRX) Behavior and Processing Map of 33Cr23Ni8Mn3N Based on an Artificial Neural Network (ANN).
    Cai Z; Ji H; Pei W; Tang X; Xin L; Lu Y; Li W
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32178352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.