These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33276701)

  • 1. Evaluation of surface layer stability of surface-modified polyester biomaterials.
    Poli H; Mutch AL; A A; Ivanovski S; Vaquette C; Castner DG; Gómez-Cerezo MN; Grøndahl L
    Biointerphases; 2020 Dec; 15(6):061010. PubMed ID: 33276701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications.
    Alvim Valente C; Cesar Chagastelles P; Fontana Nicoletti N; Ramos Garcez G; Sgarioni B; Herrmann F; Pesenatto G; Goldani E; Zanini ML; Campos MM; Meurer Papaléo R; Braga da Silva J; de Souza Basso NR
    J Biomed Mater Res A; 2018 Jun; 106(6):1522-1534. PubMed ID: 29388321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoroughness, Surface Chemistry, and Drug Delivery Control by Atmospheric Plasma Jet on Implantable Devices.
    Patelli A; Mussano F; Brun P; Genova T; Ambrosi E; Michieli N; Mattei G; Scopece P; Moroni L
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):39512-39523. PubMed ID: 30359523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro.
    Rohman G; Pettit JJ; Isaure F; Cameron NR; Southgate J
    Biomaterials; 2007 May; 28(14):2264-74. PubMed ID: 17296219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual drug-loaded biodegradable Janus particles for simultaneous co-delivery of hydrophobic and hydrophilic compounds.
    Winkler JS; Barai M; Tomassone MS
    Exp Biol Med (Maywood); 2019 Oct; 244(14):1162-1177. PubMed ID: 31617755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein adsorption onto polyester surfaces: is there a need for surface activation?
    Atthoff B; Hilborn J
    J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):121-30. PubMed ID: 16680692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ultralong-term comparison of osteogenic behavior of three scaffolds with different matrices and degradability between one and two years.
    Huang J; Wei J; Jin S; Zou Q; Li J; Zuo Y; Li Y
    J Mater Chem B; 2020 Oct; 8(41):9524-9532. PubMed ID: 32996978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-drying of polycaprolactone and poly(D,L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs.
    Saez A; Guzmán M; Molpeceres J; Aberturas MR
    Eur J Pharm Biopharm; 2000 Nov; 50(3):379-87. PubMed ID: 11072195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Drug Release via Twin Screw Extrusion in Polyester Films.
    Zhou Y; Horne D; Steele TWJ
    J Pharm Sci; 2019 Jul; 108(7):2430-2437. PubMed ID: 30851341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopy techniques for analyzing the hydrolysis of PLGA and PLLA.
    Tan HY; Widjaja E; Boey F; Loo SC
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):433-40. PubMed ID: 19489010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges for the development of surface modified biodegradable polyester biomaterials: A chemistry perspective.
    Mutch AL; Grøndahl L
    Biointerphases; 2018 Sep; 13(6):06D501. PubMed ID: 30261734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, characterization, and cytotoxicity of PCL/PLGA scaffolds through plasma treatment in the presence of pyrrole for possible use in urethral tissue engineering.
    Sánchez-Pech JC; Rosales-Ibáñes R; Cauich-Rodriguez JV; Carrillo-Escalante HJ; Rodríguez-Navarrete A; Avila-Ortega A; Hernández-Sánchez F
    J Biomater Appl; 2020 Jan; 34(6):840-850. PubMed ID: 31630603
    [No Abstract]   [Full Text] [Related]  

  • 14. Surface modification of polyester biomaterials for tissue engineering.
    Jiao YP; Cui FZ
    Biomed Mater; 2007 Dec; 2(4):R24-37. PubMed ID: 18458475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro degradation study of polyester microspheres by a new HPLC method for monomer release determination.
    Giunchedi P; Conti B; Scalia S; Conte U
    J Control Release; 1998 Dec; 56(1-3):53-62. PubMed ID: 9801429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brush-like branched biodegradable polyesters, part III. Protein release from microspheres of poly(vinyl alcohol)-graft-poly(D,L-lactic-co-glycolic acid).
    Frauke Pistel K; Breitenbach A; Zange-Volland R; Kissel T
    J Control Release; 2001 May; 73(1):7-20. PubMed ID: 11337055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion behaviours of hepatocytes cultured onto biodegradable polymer surface modified by alkali hydrolysis process.
    Nam YS; Yoon JJ; Lee JG; Park TG
    J Biomater Sci Polym Ed; 1999; 10(11):1145-58. PubMed ID: 10606032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles.
    Oster CG; Wittmar M; Unger F; Barbu-Tudoran L; Schaper AK; Kissel T
    Pharm Res; 2004 Jun; 21(6):927-31. PubMed ID: 15212155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.