These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33276950)

  • 1. In vitro display evolution of the PURE system-expressed TNFα-binding unnatural cyclic peptide containing an N-methyl-d-amino acid.
    Tsukamoto K; Ando T; Fuji D; Yokoyama T; Takamori Y; Horiuchi D; Iwamoto R; Yamamoto M; Kawakami T
    Biochem Biophys Res Commun; 2021 Jan; 534():519-525. PubMed ID: 33276950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of IL-5-binding unnatural cyclic peptides from multiple libraries by directed evolution.
    Fuji D; Ando T; Sato M; Vedi S; Takamori Y; Yokoyama T; Yamamoto M; Kawakami T
    Biochem Biophys Res Commun; 2022 Jun; 610():188-195. PubMed ID: 35487180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid.
    Takamori Y; Ando T; Fuji D; Yokoyama T; Yamamoto M; Kawakami T
    Biochem Biophys Res Commun; 2021 Jan; 535():47-53. PubMed ID: 33340765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro selection of unnatural cyclic peptide libraries via mRNA display.
    Ma Z; Hartman MC
    Methods Mol Biol; 2012; 805():367-90. PubMed ID: 22094817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor.
    Kawakami T; Ogawa K; Hatta T; Goshima N; Natsume T
    ACS Chem Biol; 2016 Jun; 11(6):1569-77. PubMed ID: 27010125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code.
    Katoh T; Suga H
    J Am Chem Soc; 2020 Mar; 142(11):4965-4969. PubMed ID: 32129615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charging of tRNAs using ribozymes and selection of cyclic peptides containing thioethers.
    Reid PC; Goto Y; Katoh T; Suga H
    Methods Mol Biol; 2012; 805():335-48. PubMed ID: 22094815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Messenger RNA-programmed incorporation of multiple N-methyl-amino acids into linear and cyclic peptides.
    Kawakami T; Murakami H; Suga H
    Chem Biol; 2008 Jan; 15(1):32-42. PubMed ID: 18215771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro selection of protein and peptide libraries using mRNA display.
    Takahashi TT; Roberts RW
    Methods Mol Biol; 2009; 535():293-314. PubMed ID: 19377989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands.
    Richardson SL; Dods KK; Abrigo NA; Iqbal ES; Hartman MC
    Curr Opin Chem Biol; 2018 Oct; 46():172-179. PubMed ID: 30077877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed Evolution of Scanning Unnatural-Protease-Resistant (SUPR) Peptides for in Vivo Applications.
    Fiacco SV; Kelderhouse LE; Hardy A; Peleg Y; Hu B; Ornelas A; Yang P; Gammon ST; Howell SM; Wang P; Takahashi TT; Millward SW; Roberts RW
    Chembiochem; 2016 Sep; 17(17):1643-51. PubMed ID: 27465925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Selection of Thioether-Closed Macrocyclic Peptide Ligands by Means of the RaPID System.
    Katoh T; Goto Y; Suga H
    Methods Mol Biol; 2022; 2371():247-259. PubMed ID: 34596852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technologies for the synthesis of mRNA-encoding libraries and discovery of bioactive natural product-inspired non-traditional macrocyclic peptides.
    Ito K; Passioura T; Suga H
    Molecules; 2013 Mar; 18(3):3502-28. PubMed ID: 23507778
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Yokoyama T; Ando T; Takamori Y; Fuji D; Sato M; Vedi S; Yamamoto M; Kawakami T
    Chem Commun (Camb); 2022 Apr; 58(34):5237-5240. PubMed ID: 35388838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of cyclized calmodulin antagonists from a phage display random peptide library.
    Pierce HH; Adey N; Kay BK
    Mol Divers; 1996 Aug; 1(4):259-65. PubMed ID: 9237217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Screening and characterization of DNA aptamers with hTNF-alpha binding and neutralizing activity].
    Guo KT; Yan XR; Huang GJ; Xu CX; Chai YS; Zhang ZQ
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):730-3. PubMed ID: 15971588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mRNA display selection and solid-phase synthesis of Fc-binding cyclic peptide affinity ligands.
    Menegatti S; Hussain M; Naik AD; Carbonell RG; Rao BM
    Biotechnol Bioeng; 2013 Mar; 110(3):857-70. PubMed ID: 23108907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Covalent Cyclic Peptide Inhibitors in mRNA Display.
    Iskandar SE; Chiou LF; Leisner TM; Shell DJ; Norris-Drouin JL; Vaziri C; Pearce KH; Bowers AA
    J Am Chem Soc; 2023 Jul; 145(28):15065-15070. PubMed ID: 37395736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of cyclic peptide protease inhibitors.
    Young TS; Young DD; Ahmad I; Louis JM; Benkovic SJ; Schultz PG
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11052-6. PubMed ID: 21690365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.