These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 33276968)
1. A nonlinear full condition process monitoring method for hot rolling process with dynamic characteristic. Zhang C; Peng K; Dong J ISA Trans; 2021 Jun; 112():363-372. PubMed ID: 33276968 [TBL] [Abstract][Full Text] [Related]
2. Multiscale Distribution Entropy and t-Distributed Stochastic Neighbor Embedding-Based Fault Diagnosis of Rolling Bearings. Tu D; Zheng J; Jiang Z; Pan H Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265449 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear Chemical Process Fault Diagnosis Using Ensemble Deep Support Vector Data Description. Deng X; Zhang Z Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824350 [TBL] [Abstract][Full Text] [Related]
4. Variable-weighted FDA combined with t-SNE and multiple extreme learning machines for visual industrial process monitoring. Lu W; Yan X ISA Trans; 2022 Mar; 122():163-171. PubMed ID: 33972079 [TBL] [Abstract][Full Text] [Related]
5. A latent feature oriented dictionary learning method for closed-loop process monitoring. Huang K; Zhang L; Sun B; Liang X; Yang C; Gui W ISA Trans; 2022 Dec; 131():552-565. PubMed ID: 35537874 [TBL] [Abstract][Full Text] [Related]
6. A Novel Spatiotemporal Process Feature Learning Method Based On the Pseudo-Siamese Network for Complex Chemical Process Concurrent Condition Monitoring. Xu Y; Jia M; Mao Z ACS Omega; 2022 Oct; 7(41):36728-36747. PubMed ID: 36278083 [TBL] [Abstract][Full Text] [Related]
7. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis. Zhang H; Tian X; Deng X; Cao Y ISA Trans; 2018 Aug; 79():108-126. PubMed ID: 29776590 [TBL] [Abstract][Full Text] [Related]
8. Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis. Li C; Zhou Z; Wen C; Li Z ACS Omega; 2022 Mar; 7(8):6978-6990. PubMed ID: 35252689 [TBL] [Abstract][Full Text] [Related]
9. Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning. Li Z; Yan X ISA Trans; 2019 Dec; 95():68-81. PubMed ID: 31151751 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis. Deng X; Tian X; Chen S; Harris CJ IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785 [TBL] [Abstract][Full Text] [Related]
11. Quality-Related Process Monitoring and Diagnosis of Hot-Rolled Strip Based on Weighted Statistical Feature KPLS. Guo H; Sun J; Yang J; Peng Y Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447885 [TBL] [Abstract][Full Text] [Related]
12. A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings. Liu J; Hu Y; Wu B; Wang Y; Xie F Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28524088 [TBL] [Abstract][Full Text] [Related]
13. Big Data Approach to Batch Process Monitoring: Simultaneous Fault Detection and Diagnosis Using Nonlinear Support Vector Machine-based Feature Selection. Onel M; Kieslich CA; Guzman YA; Floudas CA; Pistikopoulos EN Comput Chem Eng; 2018 Jul; 115():46-63. PubMed ID: 30386002 [TBL] [Abstract][Full Text] [Related]
14. Rolling Bearing Diagnosis Based on Composite Multiscale Weighted Permutation Entropy. Gan X; Lu H; Yang G; Liu J Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266545 [TBL] [Abstract][Full Text] [Related]
15. Digital Twin-Based Fault Diagnosis Platform for Final Rolling Temperature in Hot Strip Production. Desheng C; Jian S; Mingxin L; Sensen X Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959618 [TBL] [Abstract][Full Text] [Related]
16. Fault detection for chemical processes based on non-stationarity sensitive cointegration analysis. Huang J; Sun X; Yang X; Peng K ISA Trans; 2022 Oct; 129(Pt B):321-333. PubMed ID: 35190195 [TBL] [Abstract][Full Text] [Related]
17. Improving rolling bearing online fault diagnostic performance based on multi-dimensional characteristics. Yang C; Wang H; Gao Z; Cui X R Soc Open Sci; 2018 May; 5(5):180066. PubMed ID: 29892444 [TBL] [Abstract][Full Text] [Related]
18. Modified canonical variate analysis based on dynamic kernel decomposition for dynamic nonlinear process quality monitoring. Zhang MQ; Luo XL ISA Trans; 2021 Feb; 108():106-120. PubMed ID: 32854955 [TBL] [Abstract][Full Text] [Related]
19. Adaptive Cointegration Analysis and Modified RPCA With Continual Learning Ability for Monitoring Multimode Nonstationary Processes. Zhang J; Zhou D; Chen M IEEE Trans Cybern; 2023 Aug; 53(8):4841-4854. PubMed ID: 35139034 [TBL] [Abstract][Full Text] [Related]
20. Fault diagnosis method of self-validating metal oxide semiconductor gas sensor based on t-distribution stochastic neighbor embedding and random forest. Xu P; Song K; Chen Y; Wei G; Wang Q Rev Sci Instrum; 2019 May; 90(5):055002. PubMed ID: 31153286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]