These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Knockout of Matrix Metalloproteinase 2 Opposes Hypertension- and Diabetes-induced Nephropathy. Hirata T; Fan F; Fan L; Amin G; White T; Geurts AM; Kojima N; Takahashi T; Miyata N; Williams J; Roman RJ J Cardiovasc Pharmacol; 2023 Dec; 82(6):445-457. PubMed ID: 37643020 [TBL] [Abstract][Full Text] [Related]
23. Regression of glomerular injury by kallikrein infusion in Dahl salt-sensitive rats is a bradykinin B2-receptor-mediated event. Hirawa N; Uehara Y; Suzuki T; Kawabata Y; Numabe A; Gomi T; lkeda T; Kizuki K; Omata M Nephron; 1999 Feb; 81(2):183-93. PubMed ID: 9933754 [TBL] [Abstract][Full Text] [Related]
24. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid. Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437 [TBL] [Abstract][Full Text] [Related]
25. Enhanced renal ischemia-reperfusion injury in aging and diabetes. Muroya Y; He X; Fan L; Wang S; Xu R; Fan F; Roman RJ Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1843-F1854. PubMed ID: 30207168 [TBL] [Abstract][Full Text] [Related]
26. Lysophosphatidic acid (LPA) as a modulator of plasma membrane Ca Sant'Anna JF; Baldez VS; Razuck-Garrão NA; Lemos T; Diaz BL; Einicker-Lamas M J Physiol Biochem; 2021 May; 77(2):321-329. PubMed ID: 33704695 [TBL] [Abstract][Full Text] [Related]
27. Effect of renal medullary H2O2 on salt-induced hypertension and renal injury. Taylor NE; Cowley AW Am J Physiol Regul Integr Comp Physiol; 2005 Dec; 289(6):R1573-9. PubMed ID: 16109803 [TBL] [Abstract][Full Text] [Related]
28. Lysophosphatidic Acid Induces Ligamentum Flavum Hypertrophy Through the LPAR1/Akt Pathway. Zhou T; Du L; Chen C; Han C; Li X; Qin A; Zhao C; Zhang K; Zhao J Cell Physiol Biochem; 2018; 45(4):1472-1486. PubMed ID: 29466791 [TBL] [Abstract][Full Text] [Related]
29. Lysophosphatidic acid regulates blood glucose by stimulating myotube and adipocyte glucose uptake. Yea K; Kim J; Lim S; Park HS; Park KS; Suh PG; Ryu SH J Mol Med (Berl); 2008 Feb; 86(2):211-20. PubMed ID: 17924084 [TBL] [Abstract][Full Text] [Related]
30. Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model. Nangaku M; Miyata T; Sada T; Mizuno M; Inagi R; Ueda Y; Ishikawa N; Yuzawa H; Koike H; van Ypersele de Strihou C; Kurokawa K J Am Soc Nephrol; 2003 May; 14(5):1212-22. PubMed ID: 12707391 [TBL] [Abstract][Full Text] [Related]
31. Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers. David M; Sahay D; Mege F; Descotes F; Leblanc R; Ribeiro J; Clézardin P; Peyruchaud O PLoS One; 2014; 9(5):e97771. PubMed ID: 24828490 [TBL] [Abstract][Full Text] [Related]
32. Stimulatory role of lysophosphatidic acid in cyclooxygenase-2 induction by synovial fluid of patients with rheumatoid arthritis in fibroblast-like synovial cells. Nochi H; Tomura H; Tobo M; Tanaka N; Sato K; Shinozaki T; Kobayashi T; Takagishi K; Ohta H; Okajima F; Tamoto K J Immunol; 2008 Oct; 181(7):5111-9. PubMed ID: 18802115 [TBL] [Abstract][Full Text] [Related]
33. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction. Xianyuan L; Wei Z; Yaqian D; Dan Z; Xueli T; Zhanglu D; Guanyi L; Lan T; Menghua L Phytomedicine; 2019 Feb; 53():274-285. PubMed ID: 30668407 [TBL] [Abstract][Full Text] [Related]
34. Dioleoyl phosphatidic acid increases intracellular Ca2+ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts. Chang YJ; Kim YL; Lee YK; Sacket SJ; Kim K; Kim HL; Han M; Bae YS; Okajima F; Im DS Prostaglandins Other Lipid Mediat; 2007 Jun; 83(4):268-76. PubMed ID: 17499746 [TBL] [Abstract][Full Text] [Related]
35. Overexpression of chloride channel CLC-K2 mRNA in the renal medulla of Dahl salt-sensitive rats. Castrop H; Krämer BK; Riegger GA; Kurtz A; Wolf K J Hypertens; 2000 Sep; 18(9):1289-95. PubMed ID: 10994760 [TBL] [Abstract][Full Text] [Related]
36. Stimulatory actions of lysophosphatidic acid on mouse ATDC5 chondroprogenitor cells. Itoh R; Miura S; Takimoto A; Kondo S; Sano H; Hiraki Y J Bone Miner Metab; 2010 Nov; 28(6):659-71. PubMed ID: 20458606 [TBL] [Abstract][Full Text] [Related]
37. Role of bradykinin in renoprotective effects by angiotensin II type 1 receptor antagonist in salt-sensitive hypertension. Yokota K; Kishida M; Ogura T; Suzuki J; Otsuka F; Mimura Y; Takeda M; Nakamura Y; Makino H Hypertens Res; 2003 Mar; 26(3):265-72. PubMed ID: 12675283 [TBL] [Abstract][Full Text] [Related]
38. Salt-sensitive increase in macrophages in the kidneys of Dahl SS rats. Fehrenbach DJ; Abais-Battad JM; Dasinger JH; Lund H; Mattson DL Am J Physiol Renal Physiol; 2019 Aug; 317(2):F361-F374. PubMed ID: 31215801 [TBL] [Abstract][Full Text] [Related]
39. Renoprotective mechanisms of pirfenidone in hypertension-induced renal injury: through anti-fibrotic and anti-oxidative stress pathways. Ji X; Naito Y; Weng H; Ma X; Endo K; Kito N; Yanagawa N; Yu Y; Li J; Iwai N Biomed Res; 2013; 34(6):309-19. PubMed ID: 24389407 [TBL] [Abstract][Full Text] [Related]