BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33277431)

  • 1. Development and validation of a potent and specific inhibitor for the CLC-2 chloride channel.
    Koster AK; Reese AL; Kuryshev Y; Wen X; McKiernan KA; Gray EE; Wu C; Huguenard JR; Maduke M; Du Bois J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32711-32721. PubMed ID: 33277431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A selective class of inhibitors for the CLC-Ka chloride ion channel.
    Koster AK; Wood CAP; Thomas-Tran R; Chavan TS; Almqvist J; Choi KH; Du Bois J; Maduke M
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4900-E4909. PubMed ID: 29669921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42.
    Ma T; Wang L; Chai A; Liu C; Cui W; Yuan S; Wing Ngor Au S; Sun L; Zhang X; Zhang Z; Lu J; Gao Y; Wang P; Li Z; Liang Y; Vogel H; Wang YT; Wang D; Yan K; Zhang H
    Nat Commun; 2023 Jun; 14(1):3424. PubMed ID: 37296152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion.
    Rinke I; Artmann J; Stein V
    J Neurosci; 2010 Mar; 30(13):4776-86. PubMed ID: 20357128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels.
    Thompson CH; Olivetti PR; Fuller MD; Freeman CS; McMaster D; French RJ; Pohl J; Kubanek J; McCarty NA
    J Biol Chem; 2009 Sep; 284(38):26051-62. PubMed ID: 19574231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels.
    Zifarelli G; Liantonio A; Gradogna A; Picollo A; Gramegna G; De Bellis M; Murgia AR; Babini E; Camerino DC; Pusch M
    Br J Pharmacol; 2010 Aug; 160(7):1652-61. PubMed ID: 20649569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-steric opening of the CLC-2 chloride channel gate.
    De Jesús-Pérez JJ; Méndez-Maldonado GA; López-Romero AE; Esparza-Jasso D; González-Hernández IL; De la Rosa V; Gastélum-Garibaldi R; Sánchez-Rodríguez JE; Arreola J
    Sci Rep; 2021 Jun; 11(1):13127. PubMed ID: 34162897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels.
    Gradogna A; Babini E; Picollo A; Pusch M
    J Gen Physiol; 2010 Sep; 136(3):311-23. PubMed ID: 20805576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1.
    Estévez R; Schroeder BC; Accardi A; Jentsch TJ; Pusch M
    Neuron; 2003 Apr; 38(1):47-59. PubMed ID: 12691663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical properties of ClC-3 differentiate it from swelling-activated chloride channels in Chinese hamster ovary-K1 cells.
    Li X; Shimada K; Showalter LA; Weinman SA
    J Biol Chem; 2000 Nov; 275(46):35994-8. PubMed ID: 10973952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optical assay of the transport activity of ClC-7.
    Zanardi I; Zifarelli G; Pusch M
    Sci Rep; 2013; 3():1231. PubMed ID: 23390581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels.
    Picollo A; Liantonio A; Didonna MP; Elia L; Camerino DC; Pusch M
    EMBO Rep; 2004 Jun; 5(6):584-9. PubMed ID: 15167890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
    Wang L; Ma W; Zhu L; Ye D; Li Y; Liu S; Li H; Zuo W; Li B; Ye W; Chen L
    Am J Physiol Cell Physiol; 2012 Jul; 303(1):C14-23. PubMed ID: 22496242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism.
    Xu M; Neelands T; Powers AS; Liu Y; Miller SD; Pintilie GD; Bois JD; Dror RO; Chiu W; Maduke M
    Elife; 2024 Feb; 12():. PubMed ID: 38345841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of voltage-gated chloride channels in the epileptogenesis of temporal lobe epilepsy.
    Shen KF; Yang XL; Liu GL; Zhu G; Wang ZK; Shi XJ; Wang TT; Wu ZF; Lv SQ; Liu SY; Yang H; Zhang CQ
    EBioMedicine; 2021 Aug; 70():103537. PubMed ID: 34391093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gluconate suppresses seizure activity in developing brains by inhibiting CLC-3 chloride channels.
    Wu Z; Huo Q; Ren L; Dong F; Feng M; Wang Y; Bai Y; Lüscher B; Li ST; Wang GL; Long C; Wang Y; Wu G; Chen G
    Mol Brain; 2019 May; 12(1):50. PubMed ID: 31088565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel.
    Bennetts B; Yu Y; Chen TY; Parker MW
    J Biol Chem; 2012 Jul; 287(31):25808-20. PubMed ID: 22689570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large movement in the C terminus of CLC-0 chloride channel during slow gating.
    Bykova EA; Zhang XD; Chen TY; Zheng J
    Nat Struct Mol Biol; 2006 Dec; 13(12):1115-9. PubMed ID: 17115052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of ClC-2 Chloride Channel Proteostasis by Molecular Chaperones: Correction of Leukodystrophy-Associated Defect.
    Fu SJ; Hu MC; Hsiao CT; Cheng AT; Chen TY; Jeng CJ; Tang CY
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.