BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33277567)

  • 1. Transcriptome comparison between pluripotent and non-pluripotent calli derived from mature rice seeds.
    Shim S; Kim HK; Bae SH; Lee H; Lee HJ; Jung YJ; Seo PJ
    Sci Rep; 2020 Dec; 10(1):21257. PubMed ID: 33277567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo assembly and comparative analysis of the transcriptome of embryogenic callus formation in bread wheat (Triticum aestivum L.).
    Chu Z; Chen J; Sun J; Dong Z; Yang X; Wang Y; Xu H; Zhang X; Chen F; Cui D
    BMC Plant Biol; 2017 Dec; 17(1):244. PubMed ID: 29258440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic Analysis of the Dehydration Rate of Mature Rice (
    Liu Z; Gui J; Yan Y; Zhang H; He J
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated RNA-Seq Analysis and Meta-QTLs Mapping Provide Insights into Cold Stress Response in Rice Seedling Roots.
    Kong W; Zhang C; Qiang Y; Zhong H; Zhao G; Li Y
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32610550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-seq profiling of primary calli induced by different media and photoperiods for
    Yu S; Xiao Y; Lin Y; Zheng Y; Cai Q; Wei Y; Wang Y; Xie H; Zhang J
    Mol Breed; 2022 Mar; 42(3):13. PubMed ID: 37309407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration.
    Cervantes-Pérez SA; Espinal-Centeno A; Oropeza-Aburto A; Caballero-Pérez J; Falcon F; Aragón-Raygoza A; Sánchez-Segura L; Herrera-Estrella L; Cruz-Hernández A; Cruz-Ramírez A
    Dev Biol; 2018 Oct; 442(1):28-39. PubMed ID: 29705332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis.
    Hong C; Lee HG; Shim S; Park OS; Kim JH; Lee K; Oh E; Kim J; Jung YJ; Seo PJ
    New Phytol; 2024 May; 242(3):1068-1083. PubMed ID: 38406998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S; Liu XJ; Luan X; Yang W; Zhu H; Liu G; Zhang G; Wang S
    Gene; 2018 Oct; 675():285-300. PubMed ID: 29969697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential transcriptional expression following thidiazuron-induced callus differentiation developmental shifts in rice.
    Chakrabarty D; Trivedi PK; Shri M; Misra P; Asif MH; Dubey S; Kumar S; Rai A; Tiwari M; Shukla D; Pandey A; Nigam D; Tripathi RD; Tuli R
    Plant Biol (Stuttg); 2010 Jan; 12(1):46-59. PubMed ID: 20653887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and Transcriptome Analyses of Early Leaf Senescence for
    Li Z; Pan X; Guo X; Fan K; Lin W
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The WOX11-LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells During De Novo Shoot Regeneration in Tissue Culture.
    Liu J; Hu X; Qin P; Prasad K; Hu Y; Xu L
    Plant Cell Physiol; 2018 Apr; 59(4):734-743. PubMed ID: 29361138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli.
    Lee K; Park OS; Seo PJ
    Mol Cells; 2016 Jun; 39(6):484-94. PubMed ID: 27215197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis.
    Suo J; Zhou C; Zeng Z; Li X; Bian H; Wang J; Zhu M; Han N
    BMC Plant Biol; 2021 Mar; 21(1):145. PubMed ID: 33740900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighted gene coexpression network analysis-based identification of key modules and hub genes associated with drought sensitivity in rice.
    Yu B; Liu J; Wu D; Liu Y; Cen W; Wang S; Li R; Luo J
    BMC Plant Biol; 2020 Oct; 20(1):478. PubMed ID: 33081724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ARABIDOPSIS TRITHORAX 4 Facilitates Shoot Identity Establishment during the Plant Regeneration Process.
    Lee K; Park OS; Choi CY; Seo PJ
    Plant Cell Physiol; 2019 Apr; 60(4):826-834. PubMed ID: 30605532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds.
    Wilhelmsson PKI; Chandler JO; Fernandez-Pozo N; Graeber K; Ullrich KK; Arshad W; Khan S; Hofberger JA; Buchta K; Edger PP; Pires JC; Schranz ME; Leubner-Metzger G; Rensing SA
    BMC Genomics; 2019 Jan; 20(1):95. PubMed ID: 30700268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice.
    Guan S; Xu Q; Ma D; Zhang W; Xu Z; Zhao M; Guo Z
    Gene; 2019 Feb; 685():96-105. PubMed ID: 30389557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional changes of rice in response to rice black-streaked dwarf virus.
    Ahmed MMS; Ji W; Wang M; Bian S; Xu M; Wang W; Zhang J; Xu Z; Yu M; Liu Q; Zhang C; Zhang H; Tang S; Gu M; Yu H
    Gene; 2017 Sep; 628():38-47. PubMed ID: 28700950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.