These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 33277973)
1. Potential of Laponite® incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing. Cai FF; Heid S; Boccaccini AR J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1090-1104. PubMed ID: 33277973 [TBL] [Abstract][Full Text] [Related]
2. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
3. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
4. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Wei J; Wang B; Li Z; Wu Z; Zhang M; Sheng N; Liang Q; Wang H; Chen S Carbohydr Polym; 2020 Jun; 238():116207. PubMed ID: 32299554 [TBL] [Abstract][Full Text] [Related]
5. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
6. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Dong L; Bu Z; Xiong Y; Zhang H; Fang J; Hu H; Liu Z; Li X Int J Biol Macromol; 2021 Oct; 188():72-81. PubMed ID: 34364938 [TBL] [Abstract][Full Text] [Related]
7. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air. Jin Y; Liu C; Chai W; Compaan A; Huang Y ACS Appl Mater Interfaces; 2017 May; 9(20):17456-17465. PubMed ID: 28467835 [TBL] [Abstract][Full Text] [Related]
8. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
9. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO Monavari M; Homaeigohar S; Fuentes-Chandía M; Nawaz Q; Monavari M; Venkatraman A; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112470. PubMed ID: 34857258 [TBL] [Abstract][Full Text] [Related]
10. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication. Gregory T; Benhal P; Scutte A; Quashie D; Harrison K; Cargill C; Grandison S; Savitsky MJ; Ramakrishnan S; Ali J J Mech Behav Biomed Mater; 2022 Dec; 136():105474. PubMed ID: 36191458 [TBL] [Abstract][Full Text] [Related]
11. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611 [TBL] [Abstract][Full Text] [Related]
12. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
14. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Jin Y; Chai W; Huang Y Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170 [TBL] [Abstract][Full Text] [Related]
15. Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel. Dranseikiene D; Schrüfer S; Schubert DW; Reakasame S; Boccaccini AR J Mater Sci Mater Med; 2020 Mar; 31(3):31. PubMed ID: 32152812 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of multifunctional alginate dialdehyde (ADA)-gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid. Bider F; Miola M; Clejanu CE; Götzelmann J; Kuth S; Vernè E; Basu B; Boccaccini AR Int J Biol Macromol; 2024 Feb; 257(Pt 2):128449. PubMed ID: 38029911 [TBL] [Abstract][Full Text] [Related]
17. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
18. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
19. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920 [TBL] [Abstract][Full Text] [Related]
20. Biofabrication of three-dimensional cellular structures based on gelatin methacrylate-alginate interpenetrating network hydrogel. Krishnamoorthy S; Zhang Z; Xu C J Biomater Appl; 2019 Mar; 33(8):1105-1117. PubMed ID: 30636494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]