These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33278035)

  • 1. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world.
    Sadok W; Lopez JR; Smith KP
    Plant Cell Environ; 2021 Jul; 44(7):2102-2116. PubMed ID: 33278035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool?
    Chaves MM; Costa JM; Zarrouk O; Pinheiro C; Lopes CM; Pereira JS
    Plant Sci; 2016 Oct; 251():54-64. PubMed ID: 27593463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of flower transpiration during abiotic stress in annual plants.
    Sinha R; Zandalinas SI; Fichman Y; Sen S; Zeng S; Gómez-Cadenas A; Joshi T; Fritschi FB; Mittler R
    New Phytol; 2022 Jul; 235(2):611-629. PubMed ID: 35441705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability in temperature-independent transpiration responses to evaporative demand correlate with nighttime water use and its circadian control across diverse wheat populations.
    Tamang BG; Schoppach R; Monnens D; Steffenson BJ; Anderson JA; Sadok W
    Planta; 2019 Jul; 250(1):115-127. PubMed ID: 30941570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars.
    Bartlett MK; Sinclair G
    J Exp Bot; 2021 Feb; 72(5):1995-2009. PubMed ID: 33300576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited-transpiration response to high vapor pressure deficit in crop species.
    Sinclair TR; Devi J; Shekoofa A; Choudhary S; Sadok W; Vadez V; Riar M; Rufty T
    Plant Sci; 2017 Jul; 260():109-118. PubMed ID: 28554468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat.
    Schoppach R; Taylor JD; Majerus E; Claverie E; Baumann U; Suchecki R; Fleury D; Sadok W
    J Exp Bot; 2016 Apr; 67(9):2847-60. PubMed ID: 27001921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sheathing the blade: Significant contribution of sheaths to daytime and nighttime gas exchange in a grass crop.
    Sadok W; Lopez JR; Zhang Y; Tamang BG; Muehlbauer GJ
    Plant Cell Environ; 2020 Aug; 43(8):1844-1861. PubMed ID: 32459028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of nutritional regulation of plant water flux.
    Cramer MD; Hawkins HJ; Verboom GA
    Oecologia; 2009 Aug; 161(1):15-24. PubMed ID: 19449035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.
    Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E
    Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant responses to rising vapor pressure deficit.
    Grossiord C; Buckley TN; Cernusak LA; Novick KA; Poulter B; Siegwolf RTW; Sperry JS; McDowell NG
    New Phytol; 2020 Jun; 226(6):1550-1566. PubMed ID: 32064613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.
    Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA
    Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.
    Maes WH; Steppe K
    J Exp Bot; 2012 Aug; 63(13):4671-712. PubMed ID: 22922637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal closure response to soil drying at different vapor pressure deficit conditions in maize.
    Devi MJ; Reddy VR
    Plant Physiol Biochem; 2020 Sep; 154():714-722. PubMed ID: 32758980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased contribution of wheat nocturnal transpiration to daily water use under drought.
    Claverie E; Meunier F; Javaux M; Sadok W
    Physiol Plant; 2018 Mar; 162(3):290-300. PubMed ID: 28833246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.
    Tardieu F; Parent B
    Plant Cell Environ; 2017 Jun; 40(6):846-857. PubMed ID: 27569520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.
    Hernandez MJ; Montes F; Ruiz F; Lopez G; Pita P
    Ann Bot; 2016 May; 117(6):1063-71. PubMed ID: 27052343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought.
    Berger J; Palta J; Vadez V
    Plant Sci; 2016 Dec; 253():58-67. PubMed ID: 27968997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop responses to climatic variation.
    Porter JR; Semenov MA
    Philos Trans R Soc Lond B Biol Sci; 2005 Nov; 360(1463):2021-35. PubMed ID: 16433091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.