These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33278411)

  • 1. A Kinetic Model for Spray-Freezing of Pharmaceuticals.
    Borges Sebastião I; Bhatnagar B; Tchessalov S
    J Pharm Sci; 2021 May; 110(5):2047-2062. PubMed ID: 33278411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk Dynamic Spray Freeze-Drying Part 1: Modeling of Droplet Cooling and Phase Change.
    Sebastião IB; Bhatnagar B; Tchessalov S; Ohtake S; Plitzko M; Luy B; Alexeenko A
    J Pharm Sci; 2019 Jun; 108(6):2063-2074. PubMed ID: 30677417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk Dynamic Spray Freeze-Drying Part 2: Model-Based Parametric Study for Spray-Freezing Process Characterization.
    Sebastião IB; Bhatnagar B; Tchessalov S; Ohtake S; Plitzko M; Luy B; Alexeenko A
    J Pharm Sci; 2019 Jun; 108(6):2075-2085. PubMed ID: 30682340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders.
    Wanning S; Süverkrüp R; Lamprecht A
    Int J Pharm; 2020 Aug; 586():119564. PubMed ID: 32590097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability.
    Sonner C; Maa YF; Lee G
    J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.
    Wang Q; Shalaev E
    AAPS PharmSciTech; 2018 Apr; 19(3):1477-1482. PubMed ID: 29101534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new mathematical model for monitoring the temporal evolution of the ice crystal size distribution during freezing in pharmaceutical solutions.
    Colucci D; Fissore D; Barresi AA; Braatz RD
    Eur J Pharm Biopharm; 2020 Mar; 148():148-159. PubMed ID: 31953190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of subambient differential scanning calorimetry to monitor the frozen-state behavior of blends of excipients for freeze-drying.
    Martini A; Kume S; Crivellente M; Artico R
    PDA J Pharm Sci Technol; 1997; 51(2):62-7. PubMed ID: 9146035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Quality by Design Approach to the Freezing Step of Freeze-Drying: Building the Design Space.
    Arsiccio A; Pisano R
    J Pharm Sci; 2018 Jun; 107(6):1586-1596. PubMed ID: 29432761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of the freezing stage in a freeze-drying process using IR thermography.
    Colucci D; Maniaci R; Fissore D
    Int J Pharm; 2019 Jul; 566():488-499. PubMed ID: 31175990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Through-vial impedance spectroscopy of critical events during the freezing stage of the lyophilization cycle: the example of the impact of sucrose on the crystallization of mannitol.
    Arshad MS; Smith G; Polygalov E; Ermolina I
    Eur J Pharm Biopharm; 2014 Aug; 87(3):598-605. PubMed ID: 24825125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Cooling Rate on Ice Crystallization and Melting in Sucrose-Water System.
    Bogdanova E; Fureby AM; Kocherbitov V
    J Pharm Sci; 2022 Jul; 111(7):2030-2037. PubMed ID: 35120964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique.
    Kondo M; Niwa T; Okamoto H; Danjo K
    Chem Pharm Bull (Tokyo); 2009 Jul; 57(7):657-62. PubMed ID: 19571408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling in situ crystallization of pharmaceutical particles within the spray dryer.
    Woo MW; Lee MG; Shakiba S; Mansouri S
    Expert Opin Drug Deliv; 2017 Nov; 14(11):1315-1324. PubMed ID: 27918209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drying-induced variations in physico-chemical properties of amorphous pharmaceuticals and their impact on Stability II: stability of a vaccine.
    Abdul-Fattah AM; Truong-Le V; Yee L; Pan E; Ao Y; Kalonia DS; Pikal MJ
    Pharm Res; 2007 Apr; 24(4):715-27. PubMed ID: 17372697
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Babenko M; Peron JR; Kaialy W; Calabrese G; Alany RG; ElShaer A
    Int J Pharm; 2019 Jun; 564():318-328. PubMed ID: 30890450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.
    Nakagawa K; Tamiya S; Do G; Kono S; Ochiai T
    Eur J Pharm Biopharm; 2018 Jun; 127():279-287. PubMed ID: 29510203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses.
    De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T
    Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.