These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33278447)
1. Reducing the cell lysis to enhance yield of acid-stable alpha amylase by deletion of multiple peptidoglycan hydrolase-related genes in Bacillus amyloliquefaciens. Zhang J; Xu X; Li X; Chen X; Zhou C; Liu Y; Li Y; Lu F Int J Biol Macromol; 2021 Jan; 167():777-786. PubMed ID: 33278447 [TBL] [Abstract][Full Text] [Related]
2. [Effects of deleting peptidoglycan hydrolase genes on the viable cell counts of Xu X; Zhu B; Li X; Zhang J; Liu W; Lu F; Li Y Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1506-1517. PubMed ID: 35470622 [TBL] [Abstract][Full Text] [Related]
3. Identification and investigation of the effects of N-acetylmuramoyl-L-alanine amidase in Bacillus amyloliquefaciens for the cell lysis and heterologous protein production. Zhang J; Lu F; Li M Int J Biol Macromol; 2024 Jan; 256(Pt 2):128468. PubMed ID: 38035962 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of an endogenous raw starch digesting mesophilic α-amylase gene in Bacillus amyloliquefaciens Z3 by in vitro methylation protocol. Tang S; Xu T; Peng J; Zhou K; Zhu Y; Zhou W; Cheng H; Zhou H J Sci Food Agric; 2020 May; 100(7):3013-3023. PubMed ID: 32056215 [TBL] [Abstract][Full Text] [Related]
5. Remodeling Zhang J; Zhu B; Xu X; Liu Y; Li Q; Li Y; Lu F J Agric Food Chem; 2022 Aug; 70(34):10552-10562. PubMed ID: 35984403 [No Abstract] [Full Text] [Related]
6. Improving thermostability of Bacillus amyloliquefaciens alpha-amylase by multipoint mutations. Yuan S; Yan R; Lin B; Li R; Ye X Biochem Biophys Res Commun; 2023 Apr; 653():69-75. PubMed ID: 36857902 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Du R; Song Q; Zhang Q; Zhao F; Kim RC; Zhou Z; Han Y Int J Biol Macromol; 2018 Aug; 115():1151-1156. PubMed ID: 29729336 [TBL] [Abstract][Full Text] [Related]
8. Engineering peptidoglycan degradation related genes of Bacillus subtilis for better fermentation processes. Zhao L; Ye J; Fu J; Chen GQ Bioresour Technol; 2018 Jan; 248(Pt A):238-247. PubMed ID: 28811162 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Kröber M; Verwaaijen B; Wibberg D; Winkler A; Pühler A; Schlüter A J Biotechnol; 2016 Aug; 231():212-223. PubMed ID: 27312701 [TBL] [Abstract][Full Text] [Related]
10. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Wang P; Wang P; Tian J; Yu X; Chang M; Chu X; Wu N Sci Rep; 2016 Feb; 6():22229. PubMed ID: 26916714 [TBL] [Abstract][Full Text] [Related]
11. Production of thermostable multiple enzymes from Devaraj K; Aathika S; Periyasamy K; Manickam Periyaraman P; Palaniyandi S; Subramanian S Nat Prod Res; 2019 Jun; 33(11):1674-1677. PubMed ID: 29338423 [TBL] [Abstract][Full Text] [Related]
12. Deleting multiple lytic genes enhances biomass yield and production of recombinant proteins by Bacillus subtilis. Wang Y; Chen Z; Zhao R; Jin T; Zhang X; Chen X Microb Cell Fact; 2014 Aug; 13():129. PubMed ID: 25176138 [TBL] [Abstract][Full Text] [Related]
13. Chicken feathers: a complex substrate for the co-production of alpha-amylase and proteases by B. licheniformis NH1. Hmidet N; Ali Nel H; Zouari-Fakhfakh N; Haddar A; Nasri M; Sellemi-Kamoun A J Ind Microbiol Biotechnol; 2010 Sep; 37(9):983-90. PubMed ID: 20694741 [TBL] [Abstract][Full Text] [Related]
14. Development of Bacillus amyloliquefaciens as a high-level recombinant protein expression system. Wang H; Zhang X; Qiu J; Wang K; Meng K; Luo H; Su X; Ma R; Huang H; Yao B J Ind Microbiol Biotechnol; 2019 Jan; 46(1):113-123. PubMed ID: 30406346 [TBL] [Abstract][Full Text] [Related]
15. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation. Li XY; Zhang JL; Zhu SW Genet Mol Res; 2011 Sep; 10(3):2181-9. PubMed ID: 21968725 [TBL] [Abstract][Full Text] [Related]
16. Optimization and partial characterization of ca-independent α-amylase from Bacillus amyloliquefaciens BH1. Du R; Zhao F; Qiao X; Song Q; Ye G; Wang Y; Wang B; Han Y; Zhou Z Prep Biochem Biotechnol; 2018; 48(8):768-774. PubMed ID: 30303444 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of S-adenosylmethionine production by deleting thrB gene and overexpressing SAM2 gene in Bacillus amyloliquefaciens. Jiang C; Ruan L; Wei X; Guo A Biotechnol Lett; 2020 Nov; 42(11):2293-2298. PubMed ID: 32577851 [TBL] [Abstract][Full Text] [Related]
18. [Mutations in the alpha-amylase gene of Bacillus amyloliquefaciens, leading to a decrease in the temperature of protein inactivation]. Smirnova NA; Sorokin AV; Iomantas IuV; Abalakina EG; Kozlov IuI Mol Biol (Mosk); 1988; 22(5):1257-64. PubMed ID: 3265469 [TBL] [Abstract][Full Text] [Related]
19. Metabolomic Profiles of Aspergillus oryzae and Bacillus amyloliquefaciens During Rice Koji Fermentation. Lee da E; Lee S; Jang ES; Shin HW; Moon BS; Lee CH Molecules; 2016 Jun; 21(6):. PubMed ID: 27314317 [TBL] [Abstract][Full Text] [Related]
20. AmiC functions as an N-acetylmuramyl-l-alanine amidase necessary for cell separation and can promote autolysis in Neisseria gonorrhoeae. Garcia DL; Dillard JP J Bacteriol; 2006 Oct; 188(20):7211-21. PubMed ID: 17015660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]