BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1158 related articles for article (PubMed ID: 33278566)

  • 21. Matrix-Bound Nanovesicles: What Are They and What Do They Do?
    Piening LM; Wachs RA
    Cells Tissues Organs; 2023; 212(1):111-123. PubMed ID: 35168230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research status and challenges of plant-derived exosome-like nanoparticles.
    Bai C; Liu J; Zhang X; Li Y; Qin Q; Song H; Yuan C; Huang Z
    Biomed Pharmacother; 2024 May; 174():116543. PubMed ID: 38608523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post isolation modification of exosomes for nanomedicine applications.
    Hood JL
    Nanomedicine (Lond); 2016 Jul; 11(13):1745-56. PubMed ID: 27348448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers.
    Lakhal S; Wood MJ
    Bioessays; 2011 Oct; 33(10):737-41. PubMed ID: 21932222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment.
    Kooijmans SAA; Schiffelers RM; Zarovni N; Vago R
    Pharmacol Res; 2016 Sep; 111():487-500. PubMed ID: 27394168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering.
    Liang Y; Iqbal Z; Lu J; Wang J; Zhang H; Chen X; Duan L; Xia J
    Mol Ther; 2023 May; 31(5):1207-1224. PubMed ID: 36245129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant Exosome-like Nanovesicles and Their Role in the Innovative Delivery of RNA Therapeutics.
    Chen YX; Cai Q
    Biomedicines; 2023 Jun; 11(7):. PubMed ID: 37509446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles.
    Nasiri Kenari A; Cheng L; Hill AF
    Methods; 2020 May; 177():103-113. PubMed ID: 31917274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Challenges in the development and establishment of exosome-based drug delivery systems.
    Wang J; Chen D; Ho EA
    J Control Release; 2021 Jan; 329():894-906. PubMed ID: 33058934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of plant-derived exosome-like nanoparticles in drug delivery.
    Barzin M; Bagheri AM; Ohadi M; Abhaji AM; Salarpour S; Dehghannoudeh G
    Pharm Dev Technol; 2023 Jun; 28(5):383-402. PubMed ID: 37086283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake.
    Kimiz-Gebologlu I; Oncel SS
    J Control Release; 2022 Jul; 347():533-543. PubMed ID: 35597405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology.
    Szwedowicz U; Łapińska Z; Gajewska-Naryniecka A; Choromańska A
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in extracellular vesicles for therapeutic cargo delivery.
    Kim HI; Park J; Zhu Y; Wang X; Han Y; Zhang D
    Exp Mol Med; 2024 Apr; 56(4):836-849. PubMed ID: 38556545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exosome as a Novel Shuttle for Delivery of Therapeutics across Biological Barriers.
    Das CK; Jena BC; Banerjee I; Das S; Parekh A; Bhutia SK; Mandal M
    Mol Pharm; 2019 Jan; 16(1):24-40. PubMed ID: 30513203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of Cell Derived-Nanovesicle as an Alternative to Exosome Therapy.
    Jang HJ; Shim KS; Lee J; Park JH; Kang SJ; Shin YM; Lee JB; Baek W; Yoon JK
    Tissue Eng Regen Med; 2024 Jan; 21(1):1-19. PubMed ID: 38066355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. M1 Macrophage-Derived Exosome-Mimetic Nanovesicles with an Enhanced Cancer Targeting Ability.
    Baek S; Jeon M; Jung HN; Lee W; Hwang JE; Lee JS; Choi Y; Im HJ
    ACS Appl Bio Mater; 2022 Jun; 5(6):2862-2869. PubMed ID: 35561258
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant exosome nanovesicles (PENs): green delivery platforms.
    Cao M; Diao N; Cai X; Chen X; Xiao Y; Guo C; Chen D; Zhang X
    Mater Horiz; 2023 Oct; 10(10):3879-3894. PubMed ID: 37671650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges.
    Zhang M; Zang X; Wang M; Li Z; Qiao M; Hu H; Chen D
    J Mater Chem B; 2019 Apr; 7(15):2421-2433. PubMed ID: 32255119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant-Derived Exosome-Like Nanovesicles: Current Progress and Prospects.
    Mu N; Li J; Zeng L; You J; Li R; Qin A; Liu X; Yan F; Zhou Z
    Int J Nanomedicine; 2023; 18():4987-5009. PubMed ID: 37693885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosome-like Nanoparticles: A New Type of Nanocarrier.
    Fernandes M; Lopes I; Teixeira J; Botelho C; Gomes AC
    Curr Med Chem; 2020; 27(23):3888-3905. PubMed ID: 30706777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 58.