These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 33278601)

  • 1. Addressing the tumour microenvironment in early drug discovery: a strategy to overcome drug resistance and identify novel targets for cancer therapy.
    Kaemmerer E; Loessner D; Avery VM
    Drug Discov Today; 2021 Mar; 26(3):663-676. PubMed ID: 33278601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment.
    Calpe B; Kovacs WJ
    Expert Opin Drug Discov; 2020 Aug; 15(8):955-967. PubMed ID: 32364413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic.
    Dzobo K
    OMICS; 2020 Apr; 24(4):175-179. PubMed ID: 32176591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of In Vitro Co-Culture Model in Anti-Cancer Drug Development Cascade.
    Xu R; Richards FM
    Comb Chem High Throughput Screen; 2017; 20(5):451-457. PubMed ID: 28155598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking
    Jo Y; Choi N; Kim K; Koo HJ; Choi J; Kim HN
    Theranostics; 2018; 8(19):5259-5275. PubMed ID: 30555545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse tumour models to guide drug development and identify resistance mechanisms.
    Das Thakur M; Pryer NK; Singh M
    J Pathol; 2014 Jan; 232(2):103-11. PubMed ID: 24122209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extracellular matrix alteration, implication in modulation of drug resistance mechanism: friends or foes?
    Jurj A; Ionescu C; Berindan-Neagoe I; Braicu C
    J Exp Clin Cancer Res; 2022 Sep; 41(1):276. PubMed ID: 36114508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours.
    Cheng YQ; Wang SB; Liu JH; Jin L; Liu Y; Li CY; Su YR; Liu YR; Sang X; Wan Q; Liu C; Yang L; Wang ZC
    Cell Prolif; 2020 Aug; 53(8):e12865. PubMed ID: 32588948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The multicellular tumor spheroid model for high-throughput cancer drug discovery.
    LaBarbera DV; Reid BG; Yoo BH
    Expert Opin Drug Discov; 2012 Sep; 7(9):819-30. PubMed ID: 22788761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment.
    Qu Y; Dou B; Tan H; Feng Y; Wang N; Wang D
    Mol Cancer; 2019 Mar; 18(1):69. PubMed ID: 30927928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities.
    Liu Y; Zhou X; Wang X
    J Hematol Oncol; 2021 Aug; 14(1):125. PubMed ID: 34404434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles designed to regulate tumor microenvironment for cancer therapy.
    Li M; Zhang F; Su Y; Zhou J; Wang W
    Life Sci; 2018 May; 201():37-44. PubMed ID: 29577880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.
    Singh A; Brito I; Lammerding J
    Trends Cancer; 2018 Apr; 4(4):281-291. PubMed ID: 29606313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro assays and techniques utilized in anticancer drug discovery.
    Ediriweera MK; Tennekoon KH; Samarakoon SR
    J Appl Toxicol; 2019 Jan; 39(1):38-71. PubMed ID: 30073673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy.
    Kenny HA; Lal-Nag M; White EA; Shen M; Chiang CY; Mitra AK; Zhang Y; Curtis M; Schryver EM; Bettis S; Jadhav A; Boxer MB; Li Z; Ferrer M; Lengyel E
    Nat Commun; 2015 Feb; 6():6220. PubMed ID: 25653139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disentangling the fibrous microenvironment: designer culture models for improved drug discovery.
    Ort C; Lee W; Kalashnikov N; Moraes C
    Expert Opin Drug Discov; 2021 Feb; 16(2):159-171. PubMed ID: 32988224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of 3D tumor spheroids for cancer drug discovery.
    Sant S; Johnston PA
    Drug Discov Today Technol; 2017 Mar; 23():27-36. PubMed ID: 28647083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.