BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 33278981)

  • 21. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals.
    Lai CW; Yu SS
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34235-34244. PubMed ID: 32614162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing.
    Yin F; Lin L; Zhan S
    J Biomater Sci Polym Ed; 2019 Feb; 30(3):190-201. PubMed ID: 30556771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The potential of cellulose nanocrystals in tissue engineering strategies.
    Domingues RM; Gomes ME; Reis RL
    Biomacromolecules; 2014 Jul; 15(7):2327-46. PubMed ID: 24914454
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of counterion valency on the rheology of sulfonated cellulose nanocrystal hydrogels.
    Nyamayaro K; Mehrkhodavandi P; Hatzikiriakos SG
    Carbohydr Polym; 2023 Feb; 302():120378. PubMed ID: 36604056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Chau M; Sriskandha SE; Pichugin D; Thérien-Aubin H; Nykypanchuk D; Chauve G; Méthot M; Bouchard J; Gang O; Kumacheva E
    Biomacromolecules; 2015 Aug; 16(8):2455-62. PubMed ID: 26102157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Viscoelastic characteristics of all cellulose suspension and nanocomposite.
    Ahn SY; Song YS
    Carbohydr Polym; 2016 Oct; 151():119-129. PubMed ID: 27474550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties.
    Liu X; Yang K; Chang M; Wang X; Ren J
    Carbohydr Polym; 2020 Jul; 240():116289. PubMed ID: 32475570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy.
    Meng Y; Cao J; Chen Y; Yu Y; Ye L
    J Mater Chem B; 2020 Jan; 8(4):677-690. PubMed ID: 31859324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures.
    Amini M; Kamkar M; Ahmadijokani F; Ghaderi S; Rojas OJ; Hosseini H; Arjmand M
    Biomacromolecules; 2023 Feb; 24(2):775-788. PubMed ID: 36546647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing.
    Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological properties of cellulose nanofiber hydrogel for high-fidelity 3D printing.
    Shin S; Hyun J
    Carbohydr Polym; 2021 Jul; 263():117976. PubMed ID: 33858573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering.
    Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M
    Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking.
    De France KJ; Chan KJ; Cranston ED; Hoare T
    Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals.
    Gicquel E; Martin C; Gauthier Q; Engström J; Abbattista C; Carlmark A; Cranston ED; Jean B; Bras J
    Biomacromolecules; 2019 Jul; 20(7):2545-2556. PubMed ID: 31244017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.