These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 33278981)

  • 81. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels.
    Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L
    Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104
    [TBL] [Abstract][Full Text] [Related]  

  • 82. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 83. 3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles.
    Ko ES; Kim C; Choi Y; Lee KY
    Carbohydr Polym; 2020 Oct; 245():116496. PubMed ID: 32718609
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
    Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD
    Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Chitin nanocrystals assisted 3D printing of polycitrate thermoset bioelastomers.
    Gu S; Tian Y; Liang K; Ji Y
    Carbohydr Polym; 2021 Mar; 256():117549. PubMed ID: 33483056
    [TBL] [Abstract][Full Text] [Related]  

  • 87. New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration.
    Lin S; Li B; Yang L; Zhai Y; Wang X; Wang C
    Comput Methods Biomech Biomed Engin; 2022 Dec; 25(16):1796-1811. PubMed ID: 35170395
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Photopolymerizable chitosan hydrogels with improved strength and 3D printability.
    Zhang M; Wan T; Fan P; Shi K; Chen X; Yang H; Liu X; Xu W; Zhou Y
    Int J Biol Macromol; 2021 Dec; 193(Pt A):109-116. PubMed ID: 34699888
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures.
    Suntornnond R; Tan EYS; An J; Chua CK
    Sci Rep; 2017 Dec; 7(1):16902. PubMed ID: 29203812
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels.
    Baniasadi H; Ajdary R; Trifol J; Rojas OJ; Seppälä J
    Carbohydr Polym; 2021 Aug; 266():118114. PubMed ID: 34044931
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel.
    Zhang X; Morits M; Jonkergouw C; Ora A; Valle-Delgado JJ; Farooq M; Ajdary R; Huan S; Linder M; Rojas O; Sipponen MH; Österberg M
    Biomacromolecules; 2020 May; 21(5):1875-1885. PubMed ID: 31992046
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass.
    An YJ; Guo CF; Zhang M; Zhong ZP
    J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review.
    Abbasi Moud A; Abbasi Moud A
    Int J Biol Macromol; 2023 Mar; 232():123391. PubMed ID: 36716841
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Dynamics of Cellulose Nanocrystal Alignment during 3D Printing.
    Hausmann MK; Rühs PA; Siqueira G; Läuger J; Libanori R; Zimmermann T; Studart AR
    ACS Nano; 2018 Jul; 12(7):6926-6937. PubMed ID: 29975510
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Multifunctional bioactive chitosan/cellulose nanocrystal scaffolds eradicate bacterial growth and sustain drug delivery.
    Patel DK; Dutta SD; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Feb; 170():178-188. PubMed ID: 33359257
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering.
    Abouzeid RE; Khiari R; Beneventi D; Dufresne A
    Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Cellulose Nanocrystal Gels with Tunable Mechanical Properties from Hybrid Thermal Strategies.
    Li Z; Soto MA; Drummond JG; Martinez DM; Hamad WY; MacLachlan MJ
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8406-8414. PubMed ID: 36719931
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.