These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33279041)

  • 1. Mercury emissions and partitioning from Indian coal-fired power plants.
    Agarwalla H; Senapati RN; Das TB
    J Environ Sci (China); 2021 Feb; 100():28-33. PubMed ID: 33279041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of mercury in the combustion products from coal-fired power plants in Guizhou, southwest China.
    Liu S; Chen J; Cao Y; Yang H; Chen C; Jia W
    J Air Waste Manag Assoc; 2019 Feb; 69(2):234-245. PubMed ID: 30396327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active methods of mercury removal from flue gases.
    Marczak M; Budzyń S; Szczurowski J; Kogut K; Burmistrz P
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8383-8392. PubMed ID: 29572741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion.
    Otero-Rey JR; López-Vilariño JM; Moreda-Piñeiro J; Alonso-Rodríguez E; Muniategui-Lorenzo S; López-Mahía P; Prada-Rodríguez D
    Environ Sci Technol; 2003 Nov; 37(22):5262-7. PubMed ID: 14655716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.
    Chen B; Liu G; Sun R
    Arch Environ Contam Toxicol; 2016 May; 70(4):724-33. PubMed ID: 26883032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of thallium in pulverized coal utility boiler installations in Southwest China.
    Li Z; Zhou X; Wang Q; Li X; Zhang L; Wang D; He T; Cao Y; Feng X
    J Air Waste Manag Assoc; 2021 Apr; 71(4):488-500. PubMed ID: 33216702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury atmospheric emission, deposition and isotopic fingerprinting from major coal-fired power plants in Australia: Insights from palaeo-environmental analysis from sediment cores.
    Schneider L; Rose NL; Myllyvirta L; Haberle S; Lintern A; Yuan J; Sinclair D; Holley C; Zawadzki A; Sun R
    Environ Pollut; 2021 Oct; 287():117596. PubMed ID: 34426387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Oct; 229():863-870. PubMed ID: 28779897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing mercury emissions from coal-fired power plants in India: Possibilities and challenges.
    Joy A; Qureshi A
    Ambio; 2023 Jan; 52(1):242-252. PubMed ID: 35997988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products.
    Yuan J; Sun R; Wang R; Fu B; Meng M; Zheng W; Chen J
    Environ Pollut; 2021 Jan; 268(Pt B):115753. PubMed ID: 33045583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F
    J Environ Monit; 2004 Oct; 6(10):792-8. PubMed ID: 15480492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury removals by existing pollutants control devices of four coal-fired power plants in China.
    Wang J; Wang W; Xu W; Wang X; Zhao S
    J Environ Sci (China); 2011; 23(11):1839-44. PubMed ID: 22432308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pilot study of mercury liberation and capture from coal-fired power plant fly ash.
    Li J; Gao X; Goeckner B; Kollakowsky D; Ramme B
    J Air Waste Manag Assoc; 2005 Mar; 55(3):258-64. PubMed ID: 15828667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.
    Hu Y; Cheng H
    Environ Pollut; 2016 Nov; 218():1209-1221. PubMed ID: 27596303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia.
    Giang A; Stokes LC; Streets DG; Corbitt ES; Selin NE
    Environ Sci Technol; 2015 May; 49(9):5326-35. PubMed ID: 25851589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM; Taib RM; Hassim MH
    J Air Waste Manag Assoc; 2014 Aug; 64(8):867-78. PubMed ID: 25185389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes.
    Chou CP; Chiu CH; Chang TC; Hsi HC
    J Air Waste Manag Assoc; 2021 May; 71(5):553-563. PubMed ID: 33284737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.
    Boylan HM; Cain RD; Kingston HM
    J Air Waste Manag Assoc; 2003 Nov; 53(11):1318-25. PubMed ID: 14649751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of Mercury Emissions from Coal-fired Power Plants in Chongqing].
    Zhang C; Zhang YH; Wang YM; Wang DY; Xu F; Yang X; He XQ
    Huan Jing Ke Xue; 2017 Feb; 38(2):495-501. PubMed ID: 29964504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning behaviors of zinc in eight coal-fired power plants with different fueled coals and air pollution control devices.
    Zhou X; Feng X; Bi X; Li X; Wang Q; Li S; He T; Li Z
    Environ Sci Pollut Res Int; 2021 May; 28(17):21599-21609. PubMed ID: 33411308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.