These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33279292)

  • 1. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus.
    Maikoo S; Makayane D; Booysen IN; Ngubane P; Khathi A
    Eur J Med Chem; 2021 Mar; 213():113064. PubMed ID: 33279292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of methionine-ruthenium complex on the fibril formation of human islet amyloid polypeptide.
    Gong G; Xu J; Huang X; Du W
    J Biol Inorg Chem; 2019 Mar; 24(2):179-189. PubMed ID: 30701360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disaggregation of human islet amyloid polypeptide fibril formation by ruthenium polypyridyl complexes.
    Zhu D; Gong G; Wang W; Du W
    J Inorg Biochem; 2017 May; 170():109-116. PubMed ID: 28231451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral administration of Bis(aspirinato)zinc(II) complex ameliorates hyperglycemia and metabolic syndrome-like disorders in spontaneously diabetic KK-A(y) mice: structure-activity relationship on zinc-salicylate complexes.
    Yoshikawa Y; Adachi Y; Yasui H; Hattori M; Sakurai H
    Chem Pharm Bull (Tokyo); 2011; 59(8):972-7. PubMed ID: 21804241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of heteronuclear Pt-Ru complexes on the fibril formation and cytotoxicity of human islet amyloid polypeptide.
    Gong G; Du W; Xu J; Huang X; Yin G
    J Inorg Biochem; 2018 Dec; 189():7-16. PubMed ID: 30149123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium complexes as novel inhibitors of human islet amyloid polypeptide fibril formation.
    He L; Wang X; Zhao C; Wang H; Du W
    Metallomics; 2013 Dec; 5(12):1599-603. PubMed ID: 24056501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice.
    Sun J; Fu X; Liu Y; Wang Y; Huo B; Guo Y; Gao X; Li W; Hu X
    Drug Des Devel Ther; 2015; 9():6327-42. PubMed ID: 26674084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel heteroaryl phosphonicdiamides PTPs inhibitors as anti-hyperglycemic agents.
    Sekhar KC; Syed R; Golla M; Kumar M V J; Yellapu NK; Chippada AR; Chamarthi NR
    Daru; 2014 Dec; 22(1):76. PubMed ID: 25542373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-based anti-diabetic drugs: advances and challenges.
    Levina A; Lay PA
    Dalton Trans; 2011 Nov; 40(44):11675-86. PubMed ID: 21750828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding study of novel anti-diabetic pyrimidine fused heterocycles to β-lactoglobulin as a carrier protein.
    Mehraban MH; Yousefi R; Taheri-Kafrani A; Panahi F; Khalafi-Nezhad A
    Colloids Surf B Biointerfaces; 2013 Dec; 112():374-9. PubMed ID: 24028850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach.
    Rao GS; Ramachandran MV; Bajaj JS
    J Biomol Struct Dyn; 2006 Feb; 23(4):377-84. PubMed ID: 16363874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments.
    Xu J; Zhang B; Gong G; Huang X; Du W
    J Inorg Biochem; 2019 Aug; 197():110721. PubMed ID: 31146152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for inhibitors of protein tyrosine phosphatase 1B as antidiabetic drugs.
    Hooft van Huijsduijnen R; Sauer WH; Bombrun A; Swinnen D
    J Med Chem; 2004 Aug; 47(17):4142-6. PubMed ID: 15293983
    [No Abstract]   [Full Text] [Related]  

  • 14. Current anti-diabetic agents and their molecular targets: A review.
    Kerru N; Singh-Pillay A; Awolade P; Singh P
    Eur J Med Chem; 2018 May; 152():436-488. PubMed ID: 29751237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents - A brief review.
    Verma M; Gupta SJ; Chaudhary A; Garg VK
    Bioorg Chem; 2017 Feb; 70():267-283. PubMed ID: 28043717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemic agent.
    Cheon HG; Kim SM; Yang SD; Ha JD; Choi JK
    Eur J Pharmacol; 2004 Feb; 485(1-3):333-9. PubMed ID: 14757158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling of protein tyrosine phosphatase 1B (PTP 1B) inhibitors.
    Murthy VS; Kulkarni VM
    Bioorg Med Chem; 2002 Apr; 10(4):897-906. PubMed ID: 11836096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Virtual screening, optimization, and identification of a novel specific PTP-MEG2 Inhibitor with potential therapy for T2DM.
    Wang M; Li X; Dong L; Chen X; Xu W; Wang R
    Oncotarget; 2016 Aug; 7(32):50828-50834. PubMed ID: 27384997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The β-cell assassin: IAPP cytotoxicity.
    Raleigh D; Zhang X; Hastoy B; Clark A
    J Mol Endocrinol; 2017 Oct; 59(3):R121-R140. PubMed ID: 28811318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors.
    Forghieri M; Laggner C; Paoli P; Langer T; Manao G; Camici G; Bondioli L; Prati F; Costantino L
    Bioorg Med Chem; 2009 Apr; 17(7):2658-72. PubMed ID: 19297174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.