BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 33279790)

  • 21. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Image-domain material decomposition for dual-energy CT using unsupervised learning with data-fidelity loss.
    Peng J; Chang CW; Xie H; Qiu RLJ; Roper J; Wang T; Ghavidel B; Tang X; Yang X
    Med Phys; 2024 Jun; ():. PubMed ID: 38865687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of synthetic PET/MR fusion images from MR images using a combination of generative adversarial networks and conditional denoising diffusion probabilistic models based on simultaneous 18F-FDG PET/MR image data of pyogenic spondylodiscitis.
    Jung E; Kong E; Yu D; Yang H; Chicontwe P; Park SH; Jeon I
    Spine J; 2024 Apr; ():. PubMed ID: 38615932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of pseudo-CT images from pelvic MRI images based on an MD-CycleGAN model for radiotherapy.
    Sun H; Xi Q; Fan R; Sun J; Xie K; Ni X; Yang J
    Phys Med Biol; 2022 Jan; 67(3):. PubMed ID: 34879356
    [No Abstract]   [Full Text] [Related]  

  • 25. Material decomposition for simulated dual-energy breast computed tomography via hybrid optimization method.
    Komolafe TE; Du Q; Zhang Y; Wu Z; Zhang C; Li M; Zheng J; Yang X
    J Xray Sci Technol; 2020; 28(6):1037-1054. PubMed ID: 33044222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Innovative Low-dose CT Inpainting Algorithm based on Limited-angle Imaging Inpainting Model.
    Zhang Z; Yang M; Li H; Chen S; Wang J; Xu L
    J Xray Sci Technol; 2023; 31(1):131-152. PubMed ID: 36373341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NCCT-CECT image synthesizers and their application to pulmonary vessel segmentation.
    Pang H; Qi S; Wu Y; Wang M; Li C; Sun Y; Qian W; Tang G; Xu J; Liang Z; Chen R
    Comput Methods Programs Biomed; 2023 Apr; 231():107389. PubMed ID: 36739625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
    Lei Y; Harms J; Wang T; Liu Y; Shu HK; Jani AB; Curran WJ; Mao H; Liu T; Yang X
    Med Phys; 2019 Aug; 46(8):3565-3581. PubMed ID: 31112304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network.
    Shiri I; Akhavanallaf A; Sanaat A; Salimi Y; Askari D; Mansouri Z; Shayesteh SP; Hasanian M; Rezaei-Kalantari K; Salahshour A; Sandoughdaran S; Abdollahi H; Arabi H; Zaidi H
    Eur Radiol; 2021 Mar; 31(3):1420-1431. PubMed ID: 32879987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI.
    Bahrami A; Karimian A; Fatemizadeh E; Arabi H; Zaidi H
    Med Phys; 2020 Oct; 47(10):5158-5171. PubMed ID: 32730661
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks.
    Liu X; Su S; Gu W; Yao T; Shen J; Mo Y
    Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S; Yu L; Jin M
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network.
    Haubold J; Hosch R; Umutlu L; Wetter A; Haubold P; Radbruch A; Forsting M; Nensa F; Koitka S
    Eur Radiol; 2021 Aug; 31(8):6087-6095. PubMed ID: 33630160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MRI image synthesis for fluid-attenuated inversion recovery and diffusion-weighted images with deep learning.
    Kawahara D; Yoshimura H; Matsuura T; Saito A; Nagata Y
    Phys Eng Sci Med; 2023 Mar; 46(1):313-323. PubMed ID: 36715853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.