These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33279823)

  • 1. A new bioleaching strategy for the selective recovery of aluminum from multi-layer beverage cans.
    Kremser K; Gerl P; Pellis A; Guebitz GM
    Waste Manag; 2021 Feb; 120():16-24. PubMed ID: 33279823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues.
    Kremser K; Maltschnig M; Schön H; Jandric A; Gajdosik M; Vaculovic T; Kucera J; Guebitz GM
    Waste Manag; 2022 May; 144():182-190. PubMed ID: 35378357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments.
    Gomes HI; Funari V; Mayes WM; Rogerson M; Prior TJ
    J Environ Manage; 2018 Sep; 222():30-36. PubMed ID: 29800862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans.
    Naseri T; Bahaloo-Horeh N; Mousavi SM
    J Environ Manage; 2019 Apr; 235():357-367. PubMed ID: 30708273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery and distribution of incinerated aluminum packaging waste.
    Hu Y; Bakker MC; de Heij PG
    Waste Manag; 2011 Dec; 31(12):2422-30. PubMed ID: 21862306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of aluminium-magnesium alloys and some valuable salts from used beverage cans.
    Rabah MA
    Waste Manag; 2003; 23(2):173-82. PubMed ID: 12623092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of valuable and hazardous metals from dry discharged incineration slag. An approach for metal recycling and pollutant elimination.
    Auerbach R; Ratering S; Bokelmann K; Gellermann C; Brämer T; Baumann R; Schnell S
    J Environ Manage; 2019 Feb; 232():428-437. PubMed ID: 30500707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED).
    Pourhossein F; Mousavi SM
    J Hazard Mater; 2019 Oct; 378():120648. PubMed ID: 31203122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study.
    Zhou W; Zhang L; Peng J; Ge Y; Tian Z; Sun J; Cheng H; Zhou H
    Chemosphere; 2019 Oct; 232():345-355. PubMed ID: 31158629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Acidithiobacillus ferrooxidans in pure and mixed-species culture for bioleaching of Theisen sludge from former copper smelting.
    Klink C; Eisen S; Daus B; Heim J; Schlömann M; Schopf S
    J Appl Microbiol; 2016 Jun; 120(6):1520-30. PubMed ID: 27005888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment.
    Pathak A; Srichandan H; Kim DJ
    J Environ Manage; 2019 Jul; 242():372-383. PubMed ID: 31059950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of bromate from water using aluminum beverage cans via catalytic reduction and adsorption.
    Chiu YT; Lee PY; Wi-Afedzi T; Lee J; Lin KA
    J Colloid Interface Sci; 2018 Dec; 532():416-425. PubMed ID: 30099305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial leaching of waste solder for recovery of metal.
    Hocheng H; Hong T; Jadhav U
    Appl Biochem Biotechnol; 2014 May; 173(1):193-204. PubMed ID: 24634142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of Al/SiCp composites produced with rice-hull ash and aluminum cans.
    Escalera-Lozano R; Gutiérrez CA; Pech-Canul MA; Pech-Canul MI
    Waste Manag; 2008; 28(2):389-95. PubMed ID: 17320370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkaline bioleaching of municipal solid waste incineration fly ash by autochthonous extremophiles.
    Ramanathan T; Ting YP
    Chemosphere; 2016 Oct; 160():54-61. PubMed ID: 27362528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.
    Chen S; Yang Y; Liu C; Dong F; Liu B
    Chemosphere; 2015 Dec; 141():162-8. PubMed ID: 26196406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embodied energy in beverage packaging.
    Camaratta R; Volkmer TM; Osorio AG
    J Environ Manage; 2020 Apr; 260():110172. PubMed ID: 32090852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.