BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33279863)

  • 1. Learning sparse and meaningful representations through embodiment.
    Clay V; König P; Kühnberger KU; Pipa G
    Neural Netw; 2021 Feb; 134():23-41. PubMed ID: 33279863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Few-Shot Learning Capabilities in Artificial Neural Networks When Learning Through Self-Supervised Interaction.
    Clay V; Pipa G; Kuhnberger KU; Konig P
    IEEE Trans Pattern Anal Mach Intell; 2024 Jan; 46(1):209-219. PubMed ID: 37812563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modality independent adversarial network for generalized zero shot image classification.
    Zhang H; Wang Y; Long Y; Yang L; Shao L
    Neural Netw; 2021 Feb; 134():11-22. PubMed ID: 33278759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DAPath: Distance-aware knowledge graph reasoning based on deep reinforcement learning.
    Tiwari P; Zhu H; Pandey HM
    Neural Netw; 2021 Mar; 135():1-12. PubMed ID: 33310193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiview Semantic Representation for Visual Recognition.
    Zhang C; Cheng J; Tian Q
    IEEE Trans Cybern; 2020 May; 50(5):2038-2049. PubMed ID: 30418893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-label zero-shot human action recognition via joint latent ranking embedding.
    Wang Q; Chen K
    Neural Netw; 2020 Feb; 122():1-23. PubMed ID: 31675624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Predictive Coding: A Unifying Neural Model for Active Perception, Compositional Learning, and Hierarchical Planning.
    Rao RPN; Gklezakos DC; Sathish V
    Neural Comput; 2023 Dec; 36(1):1-32. PubMed ID: 38052084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning image features with fewer labels using a semi-supervised deep convolutional network.
    Dos Santos FP; Zor C; Kittler J; Ponti MA
    Neural Netw; 2020 Dec; 132():131-143. PubMed ID: 32871338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal information bottleneck for deep reinforcement learning with multiple sensors.
    You B; Liu H
    Neural Netw; 2024 Aug; 176():106347. PubMed ID: 38688069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lessons from reinforcement learning for biological representations of space.
    Muryy A; Siddharth N; Nardelli N; Glennerster A; Torr PHS
    Vision Res; 2020 Sep; 174():79-93. PubMed ID: 32683096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivariate Pattern Analysis Reveals Category-Related Organization of Semantic Representations in Anterior Temporal Cortex.
    Malone PS; Glezer LS; Kim J; Jiang X; Riesenhuber M
    J Neurosci; 2016 Sep; 36(39):10089-96. PubMed ID: 27683905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of integrated behaviors through direct optimization for homeostasis.
    Yoshida N; Daikoku T; Nagai Y; Kuniyoshi Y
    Neural Netw; 2024 Sep; 177():106379. PubMed ID: 38762941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A learning approach with incomplete pixel-level labels for deep neural networks.
    Nguyen NV; Rigaud C; Revel A; Burie JC
    Neural Netw; 2020 Oct; 130():111-125. PubMed ID: 32679455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature Aggregation With Reinforcement Learning for Video-Based Person Re-Identification.
    Zhang W; He X; Lu W; Qiao H; Li Y
    IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3847-3852. PubMed ID: 30872245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient representation learning and interpretable evaluation using clinical notes.
    Sushil M; Šuster S; Luyckx K; Daelemans W
    J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Behavior Detection Framework Using HTM-Based Semantic Folding Technique.
    Khan HM; Khan FM; Khan A; Asghar MZ; Alghazzawi DM
    Comput Math Methods Med; 2021; 2021():5585238. PubMed ID: 33790986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.