These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33280112)

  • 21. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit.
    Concha CM; Figueroa NE; Poblete LA; Oñate FA; Schwab W; Figueroa CR
    Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins.
    Delgado LD; Zúñiga PE; Figueroa NE; Pastene E; Escobar-Sepúlveda HF; Figueroa PM; Garrido-Bigotes A; Figueroa CR
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29899259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Co-regulation of Ethylene Biosynthesis and Ascorbate-Glutathione Cycle by Methy Jasmonate Contributes to Aroma Formation of Tomato Fruit during Postharvest Ripening.
    Min D; Li Z; Ai W; Li J; Zhou J; Zhang X; Mu D; Li F; Li X; Guo Y
    J Agric Food Chem; 2020 Sep; 68(39):10822-10832. PubMed ID: 32866003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by
    Li X; He L; An X; Yu K; Meng N; Duan CQ; Pan QH
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves.
    Shi J; Ma C; Qi D; Lv H; Yang T; Peng Q; Chen Z; Lin Z
    BMC Plant Biol; 2015 Sep; 15():233. PubMed ID: 26420557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate.
    Kianersi F; Abdollahi MR; Mirzaie-Asl A; Dastan D; Rasheed F
    Sci Rep; 2020 Jun; 10(1):8884. PubMed ID: 32483287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in
    Qi X; Fang H; Yu X; Xu D; Li L; Liang C; Lu H; Li W; Chen Y; Chen Z
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30103476
    [No Abstract]   [Full Text] [Related]  

  • 28. Methyl Jasmonate Promotes Phospholipid Remodeling and Jasmonic Acid Signaling To Alleviate Chilling Injury in Peach Fruit.
    Chen M; Guo H; Chen S; Li T; Li M; Rashid A; Xu C; Wang K
    J Agric Food Chem; 2019 Sep; 67(35):9958-9966. PubMed ID: 31419123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted metabolomics analysis based on HS-SPME-GC-MS to discriminate geographical origin of 'Muscat Hamburg' grape and wine.
    Yue X; Wang S; Dong Y; Chen W; Wang Y; Xu H; Zhang Z; Fang Y; Ju Y
    Food Res Int; 2024 Apr; 181():114120. PubMed ID: 38448101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preharvest application of MeJA enhancing the quality of postharvest grape berries via regulating terpenes biosynthesis and phenylpropanoid metabolisms.
    Zhang K; Zhang J; Zheng T; Gu W; Zhang Y; Li W; Zhou P; Fang Y; Chen K
    Food Chem; 2024 Apr; 438():137958. PubMed ID: 38000159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages.
    Garde-Cerdán T; Gutiérrez-Gamboa G; Baroja E; Rubio-Bretón P; Pérez-Álvarez EP
    Food Res Int; 2018 Oct; 112():274-283. PubMed ID: 30131138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioactive compounds induced in Physalis angulata L. by methyl-jasmonate: an investigation of compound accumulation patterns and biosynthesis-related candidate genes.
    Zhan X; Luo X; He J; Zhang C; Liao X; Xu X; Feng S; Yu C; Jiang Z; Meng Y; Shen C; Wang H; Lu J
    Plant Mol Biol; 2020 Jun; 103(3):341-354. PubMed ID: 32227258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Thidiazuron on Terpene Volatile Constituents and Terpenoid Biosynthesis Pathway Gene Expression of Shine Muscat (
    Wang W; Khalil-Ur-Rehman M; Wei LL; Nieuwenhuizen NJ; Zheng H; Tao JM
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Methyl Jasmonate Doped Nanoparticles on Nitrogen Composition of Monastrell Grapes and Wines.
    Gil-Muñoz R; Giménez-Bañón MJ; Moreno-Olivares JD; Paladines-Quezada DF; Bleda-Sánchez JA; Fernández-Fernández JI; Parra-Torrejón B; Ramírez-Rodríguez GB; Delgado-López JM
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract.
    Portu J; López R; Baroja E; Santamaría P; Garde-Cerdán T
    Food Chem; 2016 Jun; 201():213-21. PubMed ID: 26868568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methyl jasmonate pretreatment improves aroma quality of cold-stored 'Nanguo' pears by promoting ester biosynthesis.
    Luo M; Zhou X; Hao Y; Sun H; Zhou Q; Sun Y; Ji SJ
    Food Chem; 2021 Feb; 338():127846. PubMed ID: 32836001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries.
    Wang K; Liao Y; Kan J; Han L; Zheng Y
    Int J Food Microbiol; 2015 Feb; 194():32-9. PubMed ID: 25461606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of hormone applications on ripening-related metabolites in Gewürztraminer grapes (Vitis vinifera L.): The key role of jasmonates in terpene modulation.
    Wang J; VanderWeide J; Yan Y; Tindjau R; Pico J; Deluc L; Zandberg WF; Castellarin SD
    Food Chem; 2022 Sep; 388():132948. PubMed ID: 35447584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preharvest Application of Elicitors to Monastrell Grapes: Impact on Wine Polysaccharide and Oligosaccharide Composition.
    Apolinar-Valiente R; Ruiz-García Y; Williams P; Gil-Muñoz R; Gómez-Plaza E; Doco T
    J Agric Food Chem; 2018 Oct; 66(42):11151-11157. PubMed ID: 30281305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).
    Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L
    Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.