BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33281140)

  • 1. A Microfluidic Device for Modulation of Organellar Heterogeneity in Live Single Cells.
    Wada KI; Hosokawa K; Ito Y; Maeda M
    Anal Sci; 2021 Mar; 37(3):499-503. PubMed ID: 33281140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative control of mitochondria transfer between live single cells using a microfluidic device.
    Wada KI; Hosokawa K; Ito Y; Maeda M
    Biol Open; 2017 Dec; 6(12):1960-1965. PubMed ID: 29092814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitatively Controlled Intercellular Mitochondrial Transfer by Cell Fusion-Based Method Using a Microfluidic Device.
    Wada KI; Hosokawa K; Ito Y; Maeda M
    Methods Mol Biol; 2021; 2277():39-47. PubMed ID: 34080143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of transmitochondrial cybrids using a microfluidic device.
    Wada KI; Hosokawa K; Ito Y; Maeda M; Harada Y; Yonemitsu Y
    Exp Cell Res; 2022 Sep; 418(1):113233. PubMed ID: 35659971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.
    Wada K; Hosokawa K; Ito Y; Maeda M
    Biotechnol Bioeng; 2015 Nov; 112(11):2334-42. PubMed ID: 25952096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoplasmic fusion between an enlarged embryonic stem cell and a somatic cell using a microtunnel device.
    Kim SM; Wada KI; Ueki M; Hosokawa K; Maeda M; Sakai Y; Ito Y
    Biochem Biophys Res Commun; 2019 Dec; 520(2):257-262. PubMed ID: 31594640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.
    Wada K; Hosokawa K; Kondo E; Ito Y; Maeda M
    Biotechnol Bioeng; 2014 Jul; 111(7):1464-8. PubMed ID: 24420735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A valve-based microfluidic device for on-chip single cell treatments.
    Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X
    Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics.
    Kim Y; Song J; Lee Y; Cho S; Kim S; Lee SR; Park S; Shin Y; Jeon NL
    Lab Chip; 2021 Aug; 21(16):3150-3158. PubMed ID: 34180916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip.
    He CK; Chen YW; Wang SH; Hsu CH
    Lab Chip; 2019 Apr; 19(8):1370-1377. PubMed ID: 30888367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single-cell surgery microfluidic device for transplanting tumor cytoplasm into dendritic cells without nuclei mixing.
    Okeyo KO; Hiyaji R; Oana H
    Biotechnol J; 2023 Jan; 18(1):e2200135. PubMed ID: 36412930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Droplet-Based Microfluidic Device Easily Assembled from Commercially Available Modules Online Coupled with ICPMS for Determination of Silver in Single Cell.
    Yu X; Chen B; He M; Wang H; Hu B
    Anal Chem; 2019 Feb; 91(4):2869-2875. PubMed ID: 30652466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.
    Zhou Y; Basu S; Laue E; Seshia AA
    Biosens Bioelectron; 2016 Jul; 81():249-258. PubMed ID: 26963790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic fluorescent imaging analysis of mitochondrial redox in single cells with a microfluidic device.
    Li Q; Li W; Cui S; Sun Q; Si H; Chen Z; Xu K; Li L; Tang B
    Biosens Bioelectron; 2019 Mar; 129():132-138. PubMed ID: 30690177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Single-Organelle Lipidomics in Live Cells.
    Lita A; Kuzmin AN; Pliss A; Baev A; Rzhevskii A; Gilbert MR; Larion M; Prasad PN
    Anal Chem; 2019 Sep; 91(17):11380-11387. PubMed ID: 31381322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell Analysis with Microfluidic Devices.
    Ou X; Chen P; Liu BF
    Anal Sci; 2019 Jun; 35(6):609-618. PubMed ID: 30853696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic platform with pneumatically switchable single-cell traps for selective intracellular signals probing.
    Wang Y; Zhu J; Chen P; Hu L; Feng X; Du W; Liu BF
    Talanta; 2019 Jan; 192():431-438. PubMed ID: 30348414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip.
    He CK; Chen YW; Wang SH; Hsu CH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.