These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33281249)
1. Confidence Intervals for Sparse Penalized Regression with Random Designs. Yu G; Yin L; Lu S; Liu Y J Am Stat Assoc; 2020; 115(530):794-809. PubMed ID: 33281249 [TBL] [Abstract][Full Text] [Related]
2. A few theoretical results for Laplace and arctan penalized ordinary least squares linear regression estimators. John M; Vettam S Commun Stat Theory Methods; 2024; 53(13):4819-4840. PubMed ID: 38895616 [TBL] [Abstract][Full Text] [Related]
3. Efficient ℓ Li X; Xie S; Zeng D; Wang Y Stat Med; 2018 Feb; 37(3):473-486. PubMed ID: 29082539 [TBL] [Abstract][Full Text] [Related]
4. Sparse Regression by Projection and Sparse Discriminant Analysis. Qi X; Luo R; Carroll RJ; Zhao H J Comput Graph Stat; 2015 Apr; 24(2):416-438. PubMed ID: 26345204 [TBL] [Abstract][Full Text] [Related]
5. Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications. Huang J; Zhang CH J Mach Learn Res; 2012 Jun; 13():1839-1864. PubMed ID: 24348100 [TBL] [Abstract][Full Text] [Related]
6. Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions. Liu H; Yao T; Li R; Ye Y Math Program; 2017 Nov; 166(1-2):207-240. PubMed ID: 29225375 [TBL] [Abstract][Full Text] [Related]
7. Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver. Cao Y; Kang L; Li X; Liu Y; Luo Y; Shi Y IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12057-12067. PubMed ID: 37028319 [TBL] [Abstract][Full Text] [Related]
8. Variable selection for semiparametric mixed models in longitudinal studies. Ni X; Zhang D; Zhang HH Biometrics; 2010 Mar; 66(1):79-88. PubMed ID: 19397585 [TBL] [Abstract][Full Text] [Related]
9. A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems. Gong P; Zhang C; Lu Z; Huang JZ; Ye J JMLR Workshop Conf Proc; 2013; 28(2):37-45. PubMed ID: 25285330 [TBL] [Abstract][Full Text] [Related]
10. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. Zou H; Li R Ann Stat; 2008 Aug; 36(4):1509-1533. PubMed ID: 19823597 [TBL] [Abstract][Full Text] [Related]
11. Nonparametric regression with adaptive truncation via a convex hierarchical penalty. Haris A; Shojaie A; Simon N Biometrika; 2019 Mar; 106(1):87-107. PubMed ID: 31427821 [TBL] [Abstract][Full Text] [Related]
12. L0-regularized time-varying sparse inverse covariance estimation for tracking dynamic fMRI brain networks. Zening Fu ; Sheng Han ; Ao Tan ; Yiheng Tu ; Zhiguo Zhang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1496-9. PubMed ID: 26736554 [TBL] [Abstract][Full Text] [Related]
13. A Path Algorithm for Constrained Estimation. Zhou H; Lange K J Comput Graph Stat; 2013; 22(2):261-283. PubMed ID: 24039382 [TBL] [Abstract][Full Text] [Related]
14. Morphological component analysis under non-convex smoothing penalty framework for gearbox fault diagnosis. Zhang Z; Huang W; Wang J; Ding C; Shi J; Jiang X; Shen C; Zhu Z ISA Trans; 2023 Dec; 143():525-535. PubMed ID: 37679273 [TBL] [Abstract][Full Text] [Related]
15. COORDINATE DESCENT ALGORITHMS FOR NONCONVEX PENALIZED REGRESSION, WITH APPLICATIONS TO BIOLOGICAL FEATURE SELECTION. Breheny P; Huang J Ann Appl Stat; 2011 Jan; 5(1):232-253. PubMed ID: 22081779 [TBL] [Abstract][Full Text] [Related]
16. Inference in dynamic systems using B-splines and quasilinearized ODE penalties. Frasso G; Jaeger J; Lambert P Biom J; 2016 May; 58(3):691-714. PubMed ID: 26602190 [TBL] [Abstract][Full Text] [Related]
17. Mazumder R; Friedman JH; Hastie T J Am Stat Assoc; 2011; 106(495):1125-1138. PubMed ID: 25580042 [TBL] [Abstract][Full Text] [Related]
18. STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION. Fan J; Xue L; Zou H Ann Stat; 2014 Jun; 42(3):819-849. PubMed ID: 25598560 [TBL] [Abstract][Full Text] [Related]
19. Sparse identification of nonlinear dynamical systems via non-convex penalty least squares. Lu Y; Xu W; Jiao Y; Yuan M Chaos; 2022 Feb; 32(2):023113. PubMed ID: 35232037 [TBL] [Abstract][Full Text] [Related]
20. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models. Jiang D; Huang J Stat Comput; 2014 Sep; 24(5):871-883. PubMed ID: 25309048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]