These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33281593)

  • 1. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers.
    Tortora S; Tonin L; Chisari C; Micera S; Menegatti E; Artoni F
    Front Neurorobot; 2020; 14():582728. PubMed ID: 33281593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network.
    Tortora S; Ghidoni S; Chisari C; Micera S; Artoni F
    J Neural Eng; 2020 Jul; 17(4):046011. PubMed ID: 32480381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal fusion of muscle and brain signals for a hybrid-BCI.
    Leeb R; Sagha H; Chavarriaga R; Del R Millan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4343-6. PubMed ID: 21096001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.
    Tryon J; Trejos AL
    Front Neurorobot; 2021; 15():692183. PubMed ID: 34887739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.
    Bulea TC; Kilicarslan A; Ozdemir R; Paloski WH; Contreras-Vidal JL
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Systematic Review Establishing the Current State-of-the-Art, the Limitations, and the DESIRED Checklist in Studies of Direct Neural Interfacing With Robotic Gait Devices in Stroke Rehabilitation.
    Lennon O; Tonellato M; Del Felice A; Di Marco R; Fingleton C; Korik A; Guanziroli E; Molteni F; Guger C; Otner R; Coyle D
    Front Neurosci; 2020; 14():578. PubMed ID: 32714127
    [No Abstract]   [Full Text] [Related]  

  • 8. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients.
    Sarasola-Sanz A; Irastorza-Landa N; Lopez-Larraz E; Bibian C; Helmhold F; Broetz D; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():895-900. PubMed ID: 28813934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Human Gait Using Hybrid EEG-fNIRS-Based BCI System: A Review.
    Khan H; Naseer N; Yazidi A; Eide PK; Hassan HW; Mirtaheri P
    Front Hum Neurosci; 2020; 14():613254. PubMed ID: 33568979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis.
    Loopez-Larraz E; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2000-2003. PubMed ID: 30440792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid brain-computer interface based on the fusion of electroencephalographic and electromyographic activities.
    Leeb R; Sagha H; Chavarriaga R; Millán Jdel R
    J Neural Eng; 2011 Apr; 8(2):025011. PubMed ID: 21436524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Sensorimotor Rhythms during Robotic-Assisted Treadmill Walking for Brain Computer Interface (BCI) Applications.
    García-Cossio E; Severens M; Nienhuis B; Duysens J; Desain P; Keijsers N; Farquhar J
    PLoS One; 2015; 10(12):e0137910. PubMed ID: 26675472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations.
    Luu TP; He Y; Brown S; Nakagome S; Contreras-Vidal JL
    Int Conf Virtual Rehabil; 2015 Jun; 2015():30-37. PubMed ID: 27713915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG-fTCD hybrid brain-computer interface using template matching and wavelet decomposition.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2019 Jun; 16(3):036014. PubMed ID: 30818297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.