These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 33281623)
1. Contribution of Stretch-Induced Force Enhancement to Increased Performance in Maximal Voluntary and Submaximal Artificially Activated Stretch-Shortening Muscle Action. Groeber M; Stafilidis S; Seiberl W; Baca A Front Physiol; 2020; 11():592183. PubMed ID: 33281623 [TBL] [Abstract][Full Text] [Related]
2. The effect of stretch-shortening magnitude and muscle-tendon unit length on performance enhancement in a stretch-shortening cycle. Groeber M; Stafilidis S; Baca A Sci Rep; 2021 Jul; 11(1):14605. PubMed ID: 34272461 [TBL] [Abstract][Full Text] [Related]
3. Unlocking the benefit of active stretch: the eccentric muscle action, not the preload, maximizes muscle-tendon unit stretch-shortening cycle performance. Goecking T; Holzer D; Hahn D; Siebert T; Seiberl W J Appl Physiol (1985); 2024 Aug; 137(2):394-408. PubMed ID: 38932683 [TBL] [Abstract][Full Text] [Related]
4. Residual force enhancement contributes to increased performance during stretch-shortening cycles of human plantar flexor muscles in vivo. Hahn D; Riedel TN J Biomech; 2018 Aug; 77():190-193. PubMed ID: 29935734 [TBL] [Abstract][Full Text] [Related]
5. The stretch-shortening cycle (SSC) revisited: residual force enhancement contributes to increased performance during fast SSCs of human m. adductor pollicis. Seiberl W; Power GA; Herzog W; Hahn D Physiol Rep; 2015 May; 3(5):. PubMed ID: 25975646 [TBL] [Abstract][Full Text] [Related]
6. Influence of joint angular velocity on electrically evoked concentric force potentiation induced by stretch-shortening cycle in young adults. Fukutani A; Kurihara T; Isaka T Springerplus; 2015; 4():82. PubMed ID: 25713768 [TBL] [Abstract][Full Text] [Related]
7. Residual force enhancement during multi-joint leg extensions at joint- angle configurations close to natural human motion. Paternoster FK; Seiberl W; Hahn D; Schwirtz A J Biomech; 2016 Mar; 49(5):773-779. PubMed ID: 26903409 [TBL] [Abstract][Full Text] [Related]
8. Neuromuscular performance of maximal voluntary explosive concentric contractions is influenced by angular acceleration. Hahn D; Bakenecker P; Zinke F Scand J Med Sci Sports; 2017 Dec; 27(12):1739-1749. PubMed ID: 28028870 [TBL] [Abstract][Full Text] [Related]
9. Pre-activation affects the effect of stretch-shortening cycle by modulating fascicle behavior. Fukutani A; Shimoho K; Isaka T Biol Open; 2019 Dec; 8(12):. PubMed ID: 31862776 [TBL] [Abstract][Full Text] [Related]
10. Concentric force enhancement during human movement. Finni T; Ikegawa S; Komi PV Acta Physiol Scand; 2001 Dec; 173(4):369-77. PubMed ID: 11903128 [TBL] [Abstract][Full Text] [Related]
11. Enhanced force production in old age is not a far stretch: an investigation of residual force enhancement and muscle architecture. Power GA; Makrakos DP; Rice CL; Vandervoort AA Physiol Rep; 2013 Jun; 1(1):e00004. PubMed ID: 24303098 [TBL] [Abstract][Full Text] [Related]
12. Eccentric exercise-induced muscle weakness amplifies the history dependence of force. Contento VS; Power GA Eur J Appl Physiol; 2023 Apr; 123(4):749-767. PubMed ID: 36447012 [TBL] [Abstract][Full Text] [Related]
13. The Effect of a Stretch-Shortening Cycle on Muscle Activation and Muscle Oxygen Consumption: A Study of History-Dependence. Caron KE; Burr JF; Power GA J Strength Cond Res; 2020 Nov; 34(11):3139-3148. PubMed ID: 33105364 [TBL] [Abstract][Full Text] [Related]
14. Modifiability of the history dependence of force through chronic eccentric and concentric biased resistance training. Chen J; Power GA J Appl Physiol (1985); 2019 Mar; 126(3):647-657. PubMed ID: 30571280 [TBL] [Abstract][Full Text] [Related]
15. Residual Force Enhancement Is Attenuated in a Shortening Magnitude-dependent Manner. Fukutani A; Herzog W Med Sci Sports Exerc; 2018 Oct; 50(10):2007-2014. PubMed ID: 29771823 [TBL] [Abstract][Full Text] [Related]
16. Force depression following a stretch-shortening cycle depends on the amount of residual force enhancement established in the initial stretch phase. Fortuna R; Goecking T; Seiberl W; Herzog W Physiol Rep; 2019 Aug; 7(16):e14188. PubMed ID: 31420953 [TBL] [Abstract][Full Text] [Related]
17. Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles. Tomalka A; Weidner S; Hahn D; Seiberl W; Siebert T Front Physiol; 2020; 11():921. PubMed ID: 32848862 [TBL] [Abstract][Full Text] [Related]
18. Energy Cost of Force Production After a Stretch-Shortening Cycle in Skinned Muscle Fibers: Does Muscle Efficiency Increase? Joumaa V; Fukutani A; Herzog W Front Physiol; 2020; 11():567538. PubMed ID: 33536930 [TBL] [Abstract][Full Text] [Related]
19. Ultrasound and surface electromyography analyses reveal an intensity dependent active stretch-shortening cycle of the vastus lateralis muscle during ergometer rowing. Held S; Raiteri B; Rappelt L; Hahn D; Donath L Eur J Sport Sci; 2023 Sep; 23(9):1940-1949. PubMed ID: 36043353 [TBL] [Abstract][Full Text] [Related]
20. Both the elongation of attached crossbridges and residual force enhancement contribute to joint torque enhancement by the stretch-shortening cycle. Fukutani A; Misaki J; Isaka T R Soc Open Sci; 2017 Feb; 4(2):161036. PubMed ID: 28386453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]