These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33281922)

  • 1. Modeling the Effects of Helminth Infection on the Transmission Dynamics of Mycobacterium tuberculosis under Optimal Control Strategies.
    Lambura AG; Mwanga GG; Luboobi L; Kuznetsov D
    Comput Math Methods Med; 2020; 2020():8869377. PubMed ID: 33281922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical Model for Optimal Control of Soil-Transmitted Helminth Infection.
    Lambura AG; Mwanga GG; Luboobi L; Kuznetsov D
    Comput Math Methods Med; 2020; 2020():6721919. PubMed ID: 32802152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Coinfection-helminthes and tuberculosis'.
    Rafi W; Ribeiro-Rodrigues R; Ellner JJ; Salgame P
    Curr Opin HIV AIDS; 2012 May; 7(3):239-44. PubMed ID: 22411453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral Resistance.
    Kanyiri CW; Luboobi L; Kimathi M
    Comput Math Methods Med; 2020; 2020():5984095. PubMed ID: 32256682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases.
    Abboubakar H; Kamgang JC; Nkamba LN; Tieudjo D
    J Math Biol; 2018 Jan; 76(1-2):379-427. PubMed ID: 28589490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment.
    Sharomi O; Podder CN; Gumel AB; Song B
    Math Biosci Eng; 2008 Jan; 5(1):145-74. PubMed ID: 18193936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites.
    Ezenwa VO; Jolles AE
    Integr Comp Biol; 2011 Oct; 51(4):540-51. PubMed ID: 21727178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation and optimal control analysis of HIV/AIDS and COVID-19 co-infection model with numerical simulation.
    Kotola BS; Teklu SW; Abebaw YF
    PLoS One; 2023; 18(5):e0284759. PubMed ID: 37146033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model.
    Agusto FB; Adekunle AI
    Biosystems; 2014 May; 119():20-44. PubMed ID: 24704209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Mathematical Model of COVID-19 with Vaccination and Treatment.
    Diagne ML; Rwezaura H; Tchoumi SY; Tchuenche JM
    Comput Math Methods Med; 2021; 2021():1250129. PubMed ID: 34497662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No impact of helminth coinfection in patients with smear positive tuberculosis on immunoglobulin levels using a novel method measuring Mycobacterium tuberculosis-specific antibodies.
    Pushpamithran G; Skoglund C; Olsson F; Méndez-Aranda M; Schön T; Segelmark M; Stendahl O; Gilman RH; Blomgran R
    Allergy Asthma Clin Immunol; 2023 Jun; 19(1):55. PubMed ID: 37386541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling HIV/AIDS and tuberculosis coinfection.
    Bhunu CP; Garira W; Mukandavire Z
    Bull Math Biol; 2009 Oct; 71(7):1745-80. PubMed ID: 19475456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevalence and clinical relevance of helminth co-infections among tuberculosis patients in urban Tanzania.
    Mhimbira F; Hella J; Said K; Kamwela L; Sasamalo M; Maroa T; Chiryamkubi M; Mhalu G; Schindler C; Reither K; Knopp S; Utzinger J; Gagneux S; Fenner L
    PLoS Negl Trop Dis; 2017 Feb; 11(2):e0005342. PubMed ID: 28178325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of helminths and Mycobacterium tuberculosis infection on HIV-1: a cellular immunological perspective.
    Mouser EE; Pollakis G; Paxton WA
    Curr Opin HIV AIDS; 2012 May; 7(3):260-7. PubMed ID: 22411452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control.
    Bhunu CP; Garira W; Mukandavire Z; Magombedze G
    J Theor Biol; 2008 Oct; 254(3):633-49. PubMed ID: 18644386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling with optimal control analysis of social media addiction.
    Alemneh HT; Alemu NY
    Infect Dis Model; 2021; 6():405-419. PubMed ID: 33615084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways.
    Song C; Xu R; Bai N; Tian XH; Lin JZ
    Math Biosci Eng; 2020 Jun; 17(4):4210-4224. PubMed ID: 32987576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics and optimal control of tuberculosis model with the combined effects of vaccination, treatment and contaminated environments.
    Kang TL; Huo HF; Xiang H
    Math Biosci Eng; 2024 Mar; 21(4):5308-5334. PubMed ID: 38872537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of patient compliance in repeated rounds of mass drug administration (MDA) for the elimination of intestinal helminth transmission.
    Farrell SH; Truscott JE; Anderson RM
    Parasit Vectors; 2017 Jun; 10(1):291. PubMed ID: 28606164
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.