These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 33282323)

  • 1. Identification of glottal instants using electroglottographic signal for vulnerable cases of voicing.
    Mandal T; Rao KS; Gupta SK
    Healthc Technol Lett; 2020 Oct; 7(5):132-138. PubMed ID: 33282323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Glottal Instant Detection and Electroglottographic Parameter Extraction for Automated Voice Pathology Assessment.
    Deshpande PS; Manikandan MS
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):398-408. PubMed ID: 28103563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation.
    Henrich N; d'Alessandro C; Doval B; Castellengo M
    J Acoust Soc Am; 2004 Mar; 115(3):1321-32. PubMed ID: 15058354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
    Herbst CT; Lohscheller J; Švec JG; Henrich N; Weissengruber G; Fitch WT
    J Exp Biol; 2014 Mar; 217(Pt 6):955-63. PubMed ID: 24622896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electroglottographic variability index in euphonic and pathological voice.
    Nacci A; Romeo SO; Cavaliere MD; Macerata A; Bastiani L; Paludetti G; Galli J; Marchese MR; Barillari MR; Barillari U; Berrettini S; Laschi C; Cianchetti M; Manti M; Ursino F; Fattori B
    Acta Otorhinolaryngol Ital; 2019 Dec; 39(6):381-388. PubMed ID: 30745592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of voice source characteristics using a constrained polynomial representation of voice source signals.
    Kaburagi T; Kawai K; Abe S
    J Acoust Soc Am; 2007 Feb; 121(2):745-8. PubMed ID: 17348497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared photoglottography for measuring multiple glottal events.
    Chi Y; Honda K; Wei J
    JASA Express Lett; 2022 Oct; 2(10):105203. PubMed ID: 36319211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using electroglottographic real-time feedback to control posterior glottal adduction during phonation.
    Herbst CT; Howard D; Schlömicher-Thier J
    J Voice; 2010 Jan; 24(1):72-85. PubMed ID: 19185453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronized videostroboscopic and electroglottographic examination of glottal opening.
    Anastaplo S; Karnell MP
    J Acoust Soc Am; 1988 May; 83(5):1883-90. PubMed ID: 3403804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of voicing in stuttered and fluent utterances.
    Borden GJ; Baer T; Kenney MK
    J Speech Hear Res; 1985 Sep; 28(3):363-72. PubMed ID: 4046577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of EGG in Identifying Prevocalic Glottal Stop.
    Ren Z; Shang F; Zheng Y; Wu N; Ma L; Zhou X
    J Voice; 2024 Feb; ():. PubMed ID: 38402112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoothness of an equation for the glottal flow rate versus the glottal area.
    Lucero JC; Schoentgen J
    J Acoust Soc Am; 2015 May; 137(5):2970-3. PubMed ID: 25994724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative assessment of electroglottographic and acoustic measures of jitter in pathological voices.
    Vieira MN; McInnes FR; Jack MA
    J Speech Lang Hear Res; 1997 Feb; 40(1):170-82. PubMed ID: 9113868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximations of open quotient and speed quotient from glottal airflow and EGG waveforms: effects of measurement criteria and sound pressure level.
    Sapienza CM; Stathopoulos ET; Dromey C
    J Voice; 1998 Mar; 12(1):31-43. PubMed ID: 9619977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the influence of laryngeal pathologies on acoustic and electroglottographic jitter measures.
    Vieira MN; McInnes FR; Jack MA
    J Acoust Soc Am; 2002 Feb; 111(2):1045-55. PubMed ID: 11863161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIM--simultaneous inverse filtering and matching of a glottal flow model for acoustic speech signals.
    Fröhlich M; Michaelis D; Strube HW
    J Acoust Soc Am; 2001 Jul; 110(1):479-88. PubMed ID: 11508972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons among aerodynamic, electroglottographic, and acoustic spectral measures of female voice.
    Holmberg EB; Hillman RE; Perkell JS; Guiod PC; Goldman SL
    J Speech Hear Res; 1995 Dec; 38(6):1212-23. PubMed ID: 8747815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vowel effect on glottal parameters and the magnitude of jaw opening.
    Lim M; Lin E; Bones P
    J Voice; 2006 Mar; 20(1):46-54. PubMed ID: 15941648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of F0 and amplitude in the perception of intervocalic glottal stops.
    Hillenbrand JM; Houde RA
    J Speech Hear Res; 1996 Dec; 39(6):1182-90. PubMed ID: 8959603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.