These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33282488)

  • 21. A Macro-Monte Carlo method for the simulation of diffuse light transport in tissue.
    Finlay JC; Zhu TC
    Proc SPIE Int Soc Opt Eng; 2006 Jan; 6139():. PubMed ID: 26113756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models.
    Tran AP; Yan S; Fang Q
    Neurophotonics; 2020 Jan; 7(1):015008. PubMed ID: 32118085
    [No Abstract]   [Full Text] [Related]  

  • 23. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.
    Chi Y; Tian Z; Jia X
    Phys Med Biol; 2016 Aug; 61(15):5851-67. PubMed ID: 27427297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light transport in tissue by 3D Monte Carlo: influence of boundary voxelization.
    Binzoni T; Leung TS; Giust R; Rüfenacht D; Gandjbakhche AH
    Comput Methods Programs Biomed; 2008 Jan; 89(1):14-23. PubMed ID: 18045725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerating mesh-based Monte Carlo method on modern CPU architectures.
    Fang Q; Kaeli DR
    Biomed Opt Express; 2012 Dec; 3(12):3223-30. PubMed ID: 23243572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Meshless Monte Carlo radiation transfer method for curved geometries using signed distance functions.
    McMillan L; Bruce GD; Dholakia K
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 35927789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Layered mass geometry: a novel technique to overlay seeds and applicators onto patient geometry in Geant4 brachytherapy simulations.
    Enger SA; Landry G; D'Amours M; Verhaegen F; Beaulieu L; Asai M; Perl J
    Phys Med Biol; 2012 Oct; 57(19):6269-77. PubMed ID: 22975747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J; Sheng K; Yu V; Chen Q; Low DA; Kupelian P; Santhanam A
    Med Phys; 2014 Oct; 41(10):101711. PubMed ID: 25281950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media.
    Glaser AK; Kanick SC; Zhang R; Arce P; Pogue BW
    Biomed Opt Express; 2013 May; 4(5):741-59. PubMed ID: 23667790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance of a hybrid Monte Carlo-Pencil Beam dose algorithm for proton therapy inverse planning.
    Barragán Montero AM; Souris K; Sanchez-Parcerisa D; Sterpin E; Lee JA
    Med Phys; 2018 Feb; 45(2):846-862. PubMed ID: 29159915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation.
    Tsai MY; Tian Z; Qin N; Yan C; Lai Y; Hung SH; Chi Y; Jia X
    Med Phys; 2020 Apr; 47(4):1958-1970. PubMed ID: 31971258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient framework for photon Monte Carlo treatment planning.
    Fix MK; Manser P; Frei D; Volken W; Mini R; Born EJ
    Phys Med Biol; 2007 Oct; 52(19):N425-37. PubMed ID: 17881793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo study on optimal breast voxel resolution for dosimetry estimates in digital breast tomosynthesis.
    Fedon C; Rabin C; Caballo M; Diaz O; García E; Rodríguez-Ruiz A; González-Sprinberg GA; Sechopoulos I
    Phys Med Biol; 2018 Dec; 64(1):015003. PubMed ID: 30524034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues.
    Ren N; Liang J; Qu X; Li J; Lu B; Tian J
    Opt Express; 2010 Mar; 18(7):6811-23. PubMed ID: 20389700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.
    Li D; Chen B; Ran WY; Wang GX; Wu WJ
    J Biomed Opt; 2015; 20(9):095014. PubMed ID: 26417866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems.
    Pietrzak J; Kacperski K; Cieślar M
    Proc SPIE Int Soc Opt Eng; 2015 Mar; 9412():. PubMed ID: 29997407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerated GPU based SPECT Monte Carlo simulations.
    Garcia MP; Bert J; Benoit D; Bardiès M; Visvikis D
    Phys Med Biol; 2016 Jun; 61(11):4001-18. PubMed ID: 27163656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.
    Kim J; Smit B
    J Chem Theory Comput; 2012 Jul; 8(7):2336-43. PubMed ID: 26588966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards real-time photon Monte Carlo dose calculation in the cloud.
    Ziegenhein P; Kozin IN; Kamerling CP; Oelfke U
    Phys Med Biol; 2017 Jun; 62(11):4375-4389. PubMed ID: 28141583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.