BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33282513)

  • 1. Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics.
    Ye S; Yin Y; Yao J; Nie J; Song Y; Gao Y; Yu J; Li H; Fei P; Zheng W
    Biomed Opt Express; 2020 Nov; 11(11):6634-6648. PubMed ID: 33282513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the potential of commercial objectives to extend the field of view of two-photon microscopy by adaptive optics.
    Yao J; Gao Y; Yin Y; Lai P; Ye S; Zheng W
    Opt Lett; 2022 Feb; 47(4):989-992. PubMed ID: 35167576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon microscopy with enhanced resolution and signal-to-background ratio using hollow Gaussian beam excitation.
    Ul Alam S; Kumar Soni N; Srinivasa Rao A; He H; Ren YX; Wong KKY
    Opt Lett; 2022 Apr; 47(8):2048-2051. PubMed ID: 35427333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging.
    Yu X; Zhou L; Qi T; Zhao H; Xie H
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing a large field-of-view two-photon microscope using optical invariant analysis.
    Bumstead JR; Park JJ; Rosen IA; Kraft AW; Wright PW; Reisman MD; Côté DC; Culver JP
    Neurophotonics; 2018 Apr; 5(2):025001. PubMed ID: 29487876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volumetric two-photon microscopy with a non-diffracting Airy beam.
    Tan XJ; Kong C; Ren YX; Lai CSW; Tsia KK; Wong KKY
    Opt Lett; 2019 Jan; 44(2):391-394. PubMed ID: 30644908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.
    Streich L; Boffi JC; Wang L; Alhalaseh K; Barbieri M; Rehm R; Deivasigamani S; Gross CT; Agarwal A; Prevedel R
    Nat Methods; 2021 Oct; 18(10):1253-1258. PubMed ID: 34594033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
    Lee JH; Lee S; Gho YS; Song IS; Tchah H; Kim MJ; Kim KH
    Exp Eye Res; 2015 Mar; 132():101-8. PubMed ID: 25602499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.
    Wahl DJ; Jian Y; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2016 Jan; 7(1):1-12. PubMed ID: 26819812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples.
    Man T; Wan Y; Yan W; Wang XH; Peterman EJG; Wang D
    Biomed Opt Express; 2018 Jun; 9(6):2614-2626. PubMed ID: 30258677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberration corrections of doughnut beam by adaptive optics in the turbid medium.
    Wu C; Chen J; Si K; Song Y; Zhu X; Hu L; Zheng Y; Gong W
    J Biophotonics; 2019 Nov; 12(11):e201900125. PubMed ID: 31291061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual GRIN lens two-photon endoscopy for high-speed volumetric and deep brain imaging.
    Chien YF; Lin JY; Yeh PT; Hsu KJ; Tsai YH; Chen SK; Chu SW
    Biomed Opt Express; 2021 Jan; 12(1):162-172. PubMed ID: 33659072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
    Qin Z; He S; Yang C; Yung JS; Chen C; Leung CK; Liu K; Qu JY
    Light Sci Appl; 2020; 9():79. PubMed ID: 32411364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo.
    Li Z; Zhang Q; Chou SW; Newman Z; Turcotte R; Natan R; Dai Q; Isacoff EY; Ji N
    Sci Adv; 2020 May; 6(19):eaaz3870. PubMed ID: 32494711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited].
    Pircher M; Zawadzki RJ
    Biomed Opt Express; 2017 May; 8(5):2536-2562. PubMed ID: 28663890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics.
    Edrei E; Scarcelli G
    Appl Phys Lett; 2018 Apr; 112(16):163701. PubMed ID: 29713091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based adaptive optics for light sheet fluorescence microscopy.
    Rai MR; Li C; Ghashghaei HT; Greenbaum A
    Biomed Opt Express; 2023 Jun; 14(6):2905-2919. PubMed ID: 37342701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five-dimensional two-photon volumetric microscopy of in-vivo dynamic activities using liquid lens remote focusing.
    Tehrani KF; Latchoumane CV; Southern WM; Pendleton EG; Maslesa A; Karumbaiah L; Call JA; Mortensen LJ
    Biomed Opt Express; 2019 Jul; 10(7):3591-3604. PubMed ID: 31360606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.