These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33282515)

  • 1. Repetitive optical coherence elastography measurements with blinking nanobombs.
    Boerner P; Nevozhay D; Hatamimoslehabadi M; Chawla HS; Zvietcovich F; Aglyamov S; Larin KV; Sokolov KV
    Biomed Opt Express; 2020 Nov; 11(11):6659-6673. PubMed ID: 33282515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal elastic wave imaging using nanobomb optical coherence elastography.
    Liu CH; Nevozhay D; Zhang H; Das S; Schill A; Singh M; Aglyamov S; Sokolov KV; Larin KV
    Opt Lett; 2019 Jun; 44(12):3162-3165. PubMed ID: 31199406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobomb optical coherence elastography in multilayered phantoms.
    Hatami M; Nevozhay D; Singh M; Schill A; Boerner P; Aglyamov S; Sokolov K; Larin KV
    Biomed Opt Express; 2023 Nov; 14(11):5670-5681. PubMed ID: 38021113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobomb optical coherence elastography.
    Liu CH; Nevozhay D; Schill A; Singh M; Das S; Nair A; Han Z; Aglyamov S; Larin KV; Sokolov KV
    Opt Lett; 2018 May; 43(9):2006-2009. PubMed ID: 29714732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography.
    Zvietcovich F; Ge GR; Mestre H; Giannetto M; Nedergaard M; Rolland JP; Parker KJ
    Biomed Opt Express; 2019 Jul; 10(7):3699-3718. PubMed ID: 31360610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncontact longitudinal shear wave imaging for the evaluation of heterogeneous porcine brain biomechanical properties using optical coherence elastography.
    Zhu Y; Shi J; Alvarez-Arenas TEG; Li C; Wang H; Zhang D; He X; Wu X
    Biomed Opt Express; 2023 Oct; 14(10):5113-5126. PubMed ID: 37854580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate.
    Song S; Wei W; Hsieh BY; Pelivanov I; Shen TT; O'Donnell M; Wang RK
    Appl Phys Lett; 2016 May; 108(19):191104. PubMed ID: 27375295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second.
    Singh M; Wu C; Liu CH; Li J; Schill A; Nair A; Larin KV
    Opt Lett; 2015 Jun; 40(11):2588-91. PubMed ID: 26030564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
    Liu Y; Liu J; Fite BZ; Foiret J; Ilovitsh A; Leach JK; Dumont E; Caskey CF; Ferrara KW
    Phys Med Biol; 2017 May; 62(10):4083-4106. PubMed ID: 28426437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-optical noncontact phase-domain photoacoustic elastography.
    Yang F; Chen Z; Xing D
    Opt Lett; 2021 Oct; 46(19):5063-5066. PubMed ID: 34598269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D mapping of elastic modulus using shear wave optical micro-elastography.
    Zhu J; Qi L; Miao Y; Ma T; Dai C; Qu Y; He Y; Gao Y; Zhou Q; Chen Z
    Sci Rep; 2016 Oct; 6():35499. PubMed ID: 27762276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves.
    Ahmad A; Kim J; Sobh NA; Shemonski ND; Boppart SA
    Biomed Opt Express; 2014 Jul; 5(7):2349-61. PubMed ID: 25071969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced elastic wave classification: thermoelastic versus ablative regimes for all-optical elastography applications.
    Das S; Schill A; Liu CH; Aglyamov S; Larin KV
    J Biomed Opt; 2020 Mar; 25(3):1-13. PubMed ID: 32189479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography.
    Zhu J; Miao Y; Qi L; Qu Y; He Y; Yang Q; Chen Z
    Appl Phys Lett; 2017 May; 110(20):201101. PubMed ID: 28611483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal elastic wave imaging using nanobomb optical coherence elastography: erratum.
    Liu CH; Nevozhay D; Zhang H; Das S; Schill A; Singh M; Aglyamov S; Sokolov KV; Larin KV
    Opt Lett; 2020 Jun; 45(12):3296. PubMed ID: 32538966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.