These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33282824)

  • 1. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging.
    Huang Q; Wu W; Ai K; Liu J
    Front Chem; 2020; 8():565782. PubMed ID: 33282824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors.
    Ahn DJ; Kim JM
    Acc Chem Res; 2008 Jul; 41(7):805-16. PubMed ID: 18348539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Assembly of Polydiacetylene Microtube Biosensors Mediated by Divalent Metal Ions.
    Jiang H; Jelinek R
    Chempluschem; 2016 Jan; 81(1):119-124. PubMed ID: 31968734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent conceptual and technological advances in polydiacetylene-based supramolecular chemosensors.
    Yoon B; Lee S; Kim JM
    Chem Soc Rev; 2009 Jul; 38(7):1958-68. PubMed ID: 19551176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensors and chemosensors based on the optical responses of polydiacetylenes.
    Chen X; Zhou G; Peng X; Yoon J
    Chem Soc Rev; 2012 Jul; 41(13):4610-30. PubMed ID: 22569480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes.
    Park DH; Heo JM; Jeong W; Yoo YH; Park BJ; Kim JM
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5014-5021. PubMed ID: 29338173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-assemblies of polydiacetylenes and metal ions for solvent sensing.
    Wu S; Pan L; Huang Y; Yang N; Zhang Q
    Soft Matter; 2018 Sep; 14(33):6929-6937. PubMed ID: 30101245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets.
    Lee S; Kim JY; Chen X; Yoon J
    Chem Commun (Camb); 2016 Jul; 52(59):9178-96. PubMed ID: 27314281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic deposition polymerization of diacetylenes with tunable structure.
    Huo JP; Deng GH; Wu W; Xiong JF; Zhong ML; Wang ZY
    Macromol Rapid Commun; 2013 Nov; 34(22):1779-84. PubMed ID: 24150791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in polydiacetylene mechanochromism.
    Das B; Jo S; Zheng J; Chen J; Sugihara K
    Nanoscale; 2022 Feb; 14(5):1670-1678. PubMed ID: 35043814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed self-assembly of polydiacetylenes for highly specific and sensitive strip biosensors.
    Park HK; Chung SJ; Park HG; Cho JH; Kim M; Chung BH
    Biosens Bioelectron; 2008 Nov; 24(3):480-4. PubMed ID: 18650078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing and Tuning the Properties of Polydiacetylene Films for Sensing Applications.
    Finney TJ; Parikh SJ; Berman A; Sasaki DY; Kuhl TL
    Langmuir; 2021 Nov; 37(44):12940-12951. PubMed ID: 34699228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrochromic Approaches to Mapping Human Sweat Pores.
    Park DH; Park BJ; Kim JM
    Acc Chem Res; 2016 Jun; 49(6):1211-22. PubMed ID: 27159417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric and fluorometric detection of neomycin based on conjugated polydiacetylene supramolecules.
    Zhou G; Wang F; Wang H; Kambam S; Chen X
    Macromol Rapid Commun; 2013 Jun; 34(11):944-8. PubMed ID: 23649672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(methyl methacrylate)-supported polydiacetylene films: unique chromatic transitions and molecular sensing.
    Parambath Kootery K; Jiang H; Kolusheva S; Vinod TP; Ritenberg M; Zeiri L; Volinsky R; Malferrari D; Galletti P; Tagliavini E; Jelinek R
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8613-20. PubMed ID: 24813239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydiacetylene-enclosed near-infrared fluorescent semiconducting polymer dots for bioimaging and sensing.
    Wu PJ; Kuo SY; Huang YC; Chen CP; Chan YH
    Anal Chem; 2014 May; 86(10):4831-9. PubMed ID: 24749695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress in polydiacetylene nanowires by self-assembly and selfpolymerization.
    Zhou W; Li Y; Zhu D
    Chem Asian J; 2007 Feb; 2(2):222-9. PubMed ID: 17441156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Stable Upconverting Nanocrystal-Polydiacetylenes Nanoplates for Orthogonal Dual Signaling-Based Detection of Cyanide.
    Oh J; Jeon I; Kim D; You Y; Baek D; Kang SJ; Lee J
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4934-4943. PubMed ID: 31904923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbead-assisted PDA sensor for the detection of genetically modified organisms.
    Lim MC; Shin YJ; Jeon TJ; Kim HY; Kim YR
    Anal Bioanal Chem; 2011 May; 400(3):777-85. PubMed ID: 21387154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of polydiacetylene immobilized optically encoded beads.
    Jun BH; Baek J; Kang H; Park YJ; Jeong DH; Lee YS
    J Colloid Interface Sci; 2011 Mar; 355(1):29-34. PubMed ID: 21194704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.