These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33282893)

  • 21. Risk factors for acute kidney injury in patients with acute myocardial infarction.
    Wang C; Pei YY; Ma YH; Ma XL; Liu ZW; Zhu JH; Li CS
    Chin Med J (Engl); 2019 Jul; 132(14):1660-1665. PubMed ID: 31261199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of machine learning algorithms for predicting acute kidney injury after liver cancer resection.
    Lei L; Wang Y; Xue Q; Tong J; Zhou CM; Yang JJ
    PeerJ; 2020; 8():e8583. PubMed ID: 32140301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Relationship between carbon dioxide combining power and contrast- induced acute kidney injury in patients with ST segment elevation myocardial infarction undergoing emergency percutaneous coronary intervention].
    Ran P; Yang J; Yang X; Zhou Y; Tan N; He Y; Li G; Sun S; Liu Y; Xie N; Chen J
    Zhonghua Xin Xue Guan Bing Za Zhi; 2014 Jul; 42(7):551-6. PubMed ID: 25327595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Risk Stratification for Postoperative Acute Kidney Injury in Major Noncardiac Surgery Using Preoperative and Intraoperative Data.
    Lei VJ; Luong T; Shan E; Chen X; Neuman MD; Eneanya ND; Polsky DE; Volpp KG; Fleisher LA; Holmes JH; Navathe AS
    JAMA Netw Open; 2019 Dec; 2(12):e1916921. PubMed ID: 31808922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of logistic regression, support vector machine and random forest on the effects of titanium dioxide nanoparticles using macroalgae in treatment of certain risk factors associated with kidney injuries.
    Tu J; Hu L; Mohammed KJ; Le BN; Chen P; Ali E; Ali HE; Sun L
    Environ Res; 2023 Mar; 220():115167. PubMed ID: 36584853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy.
    Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS
    Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C-terminal fragment of agrin (CAF) levels predict acute kidney injury after acute myocardial infarction.
    Arampatzis S; Chalikias G; Devetzis V; Konstantinides S; Huynh-Do U; Tziakas D
    BMC Nephrol; 2017 Jun; 18(1):202. PubMed ID: 28646861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning approach to predict acute kidney injury after liver surgery.
    Dong JF; Xue Q; Chen T; Zhao YY; Fu H; Guo WY; Ji JS
    World J Clin Cases; 2021 Dec; 9(36):11255-11264. PubMed ID: 35071556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platelet count and volume indices in patients with contrast-induced acute kidney injury and acute myocardial infarction treated invasively.
    Francuz P; Kowalczyk J; Swoboda R; Przybylska-Siedlecka K; Kozieł M; Podolecki T; Świątkowski A; Lenarczyk R; Średniawa B; Kalarus Z
    Kardiol Pol; 2015; 73(7):520-6. PubMed ID: 25761790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using a machine learning model to predict the development of acute kidney injury in patients with heart failure.
    Liu WT; Liu XQ; Jiang TT; Wang MY; Huang Y; Huang YL; Jin FY; Zhao Q; Wu QY; Liu BC; Ruan XZ; Ma KL
    Front Cardiovasc Med; 2022; 9():911987. PubMed ID: 36176988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison between two different definitions of contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention.
    Centola M; Lucreziotti S; Salerno-Uriarte D; Sponzilli C; Ferrante G; Acquaviva R; Castini D; Spina M; Lombardi F; Cozzolino M; Carugo S
    Int J Cardiol; 2016 May; 210():4-9. PubMed ID: 26921538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning for prediction of bleeding in acute myocardial infarction patients after percutaneous coronary intervention.
    Zhao X; Wang J; Yang J; Chen T; Song Y; Li X; Xie G; Gao X; Xu H; Gao R; Yuan J; Yang Y
    Ther Adv Chronic Dis; 2023; 14():20406223231158561. PubMed ID: 36895330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study.
    Chen SW; Chang CH; Fan PC; Chen YC; Chu PH; Chen TH; Wu VC; Chang SW; Lin PJ; Tsai FC
    BMJ Open; 2016 Jun; 6(6):e010176. PubMed ID: 27354068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Analysis of Logistic Regression, Gradient Boosted Trees, SVM, and Random Forest Algorithms for Prediction of Acute Kidney Injury Requiring Dialysis After Cardiac Surgery.
    Omar ED; Mat H; Abd Karim AZ; Sanaudi R; Ibrahim FH; Omar MA; Ismail MZH; Jayaraj VJ; Goh BL
    Int J Nephrol Renovasc Dis; 2024; 17():197-204. PubMed ID: 39070075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models.
    Alaka SA; Menon BK; Brobbey A; Williamson T; Goyal M; Demchuk AM; Hill MD; Sajobi TT
    Front Neurol; 2020; 11():889. PubMed ID: 32982920
    [No Abstract]   [Full Text] [Related]  

  • 37. A risk model for the early diagnosis of acute myocardial infarction in patients with chronic kidney disease.
    Su XF; Chen X; Zhang T; Song JM; Liu X; Xu XL; Fan N
    Front Cardiovasc Med; 2023; 10():1253619. PubMed ID: 37881722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention.
    Zack CJ; Senecal C; Kinar Y; Metzger Y; Bar-Sinai Y; Widmer RJ; Lennon R; Singh M; Bell MR; Lerman A; Gulati R
    JACC Cardiovasc Interv; 2019 Jul; 12(14):1304-1311. PubMed ID: 31255564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning.
    Nishi H; Oishi N; Ishii A; Ono I; Ogura T; Sunohara T; Chihara H; Fukumitsu R; Okawa M; Yamana N; Imamura H; Sadamasa N; Hatano T; Nakahara I; Sakai N; Miyamoto S
    Stroke; 2019 Sep; 50(9):2379-2388. PubMed ID: 31409267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.