These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33282893)
61. Accurate Classification and Prediction of Acute Myocardial Infarction through an ARMD Procedure. Liu W; Zhang L; Bao L; Shen G; Feng J J Proteome Res; 2023 Mar; 22(3):758-767. PubMed ID: 36710647 [TBL] [Abstract][Full Text] [Related]
62. Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. Zhang Z; Ho KM; Hong Y Crit Care; 2019 Apr; 23(1):112. PubMed ID: 30961662 [TBL] [Abstract][Full Text] [Related]
63. Using Machine Learning Algorithms to Predict Candidaemia in ICU Patients With New-Onset Systemic Inflammatory Response Syndrome. Yuan S; Sun Y; Xiao X; Long Y; He H Front Med (Lausanne); 2021; 8():720926. PubMed ID: 34490306 [No Abstract] [Full Text] [Related]
64. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. Wong NC; Lam C; Patterson L; Shayegan B BJU Int; 2019 Jan; 123(1):51-57. PubMed ID: 29969172 [TBL] [Abstract][Full Text] [Related]
65. Additional value of the red blood cell distribution width to the Mehran risk score for predicting contrast-induced acute kidney injury in patients with ST-elevation acute myocardial infarction. Mizuno A; Ohde S; Nishizaki Y; Komatsu Y; Niwa K J Cardiol; 2015 Jul; 66(1):41-5. PubMed ID: 25448729 [TBL] [Abstract][Full Text] [Related]
66. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
67. Growth differentiation factor-15 levels and the risk of contrast induced nephropathy in patients with acute myocardial infarction undergoing percutaneous coronary intervention: A retrospective observation study. Sun L; Zhou X; Jiang J; Zang X; Chen X; Li H; Cao H; Wang Q PLoS One; 2018; 13(5):e0197609. PubMed ID: 29791474 [TBL] [Abstract][Full Text] [Related]
68. A machine learning approach to predict early outcomes after pituitary adenoma surgery. Hollon TC; Parikh A; Pandian B; Tarpeh J; Orringer DA; Barkan AL; McKean EL; Sullivan SE Neurosurg Focus; 2018 Nov; 45(5):E8. PubMed ID: 30453460 [TBL] [Abstract][Full Text] [Related]
69. Comparing Machine Learning Algorithms for Predicting Acute Kidney Injury. Parreco J; Soe-Lin H; Parks JJ; Byerly S; Chatoor M; Buicko JL; Namias N; Rattan R Am Surg; 2019 Jul; 85(7):725-729. PubMed ID: 31405416 [TBL] [Abstract][Full Text] [Related]
70. Development and validation of a pre-percutaneous coronary intervention risk model of contrast-induced acute kidney injury with an integer scoring system. Inohara T; Kohsaka S; Abe T; Miyata H; Numasawa Y; Ueda I; Nishi Y; Naito K; Shibata M; Hayashida K; Maekawa Y; Kawamura A; Sato Y; Fukuda K Am J Cardiol; 2015 Jun; 115(12):1636-42. PubMed ID: 25891989 [TBL] [Abstract][Full Text] [Related]
71. A Predictive Model for Assessing Surgery-Related Acute Kidney Injury Risk in Hypertensive Patients: A Retrospective Cohort Study. Liu X; Ye Y; Mi Q; Huang W; He T; Huang P; Xu N; Wu Q; Wang A; Li Y; Yuan H PLoS One; 2016; 11(11):e0165280. PubMed ID: 27802302 [TBL] [Abstract][Full Text] [Related]
72. Acute Kidney Injury After Primary Angioplasty: Is Contrast-Induced Nephropathy the Culprit? Caspi O; Habib M; Cohen Y; Kerner A; Roguin A; Abergel E; Boulos M; Kapeliovich MR; Beyar R; Nikolsky E; Aronson D J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28647690 [TBL] [Abstract][Full Text] [Related]
73. Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. van Os HJA; Ramos LA; Hilbert A; van Leeuwen M; van Walderveen MAA; Kruyt ND; Dippel DWJ; Steyerberg EW; van der Schaaf IC; Lingsma HF; Schonewille WJ; Majoie CBLM; Olabarriaga SD; Zwinderman KH; Venema E; Marquering HA; Wermer MJH; Front Neurol; 2018; 9():784. PubMed ID: 30319525 [No Abstract] [Full Text] [Related]
74. Platelet-to-lymphocyte ratio predicts contrast-induced acute kidney injury in diabetic patients with ST-elevation myocardial infarction. Hudzik B; Szkodziński J; Korzonek-Szlacheta I; Wilczek K; Gierlotka M; Lekston A; Zubelewicz-Szkodzińska B; Gąsior M Biomark Med; 2017 Oct; 11(10):847-856. PubMed ID: 28976786 [TBL] [Abstract][Full Text] [Related]
75. [Construction and validation of a decision tree based on biomarkers for predicting severe acute kidney injury in critically ill patients]. Chi R; Liang M; Zou Q; Li C; Zhou H; Jian Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Jun; 32(6):721-725. PubMed ID: 32684220 [TBL] [Abstract][Full Text] [Related]
76. Prediction of 1-Year Mortality from Acute Myocardial Infarction Using Machine Learning. Lee HC; Park JS; Choe JC; Ahn JH; Lee HW; Oh JH; Choi JH; Cha KS; Hong TJ; Jeong MH; Am J Cardiol; 2020 Oct; 133():23-31. PubMed ID: 32811651 [TBL] [Abstract][Full Text] [Related]
77. Risk Factors Associated With Major Cardiovascular Events 1 Year After Acute Myocardial Infarction. Wang Y; Li J; Zheng X; Jiang Z; Hu S; Wadhera RK; Bai X; Lu J; Wang Q; Li Y; Wu C; Xing C; Normand SL; Krumholz HM; Jiang L JAMA Netw Open; 2018 Aug; 1(4):e181079. PubMed ID: 30646102 [TBL] [Abstract][Full Text] [Related]
78. Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme. Shimoda A; Ichikawa D; Oyama H Comput Methods Programs Biomed; 2018 Sep; 163():39-46. PubMed ID: 30119856 [TBL] [Abstract][Full Text] [Related]
79. Using Predictive Analytics to Identify Children at High Risk of Defaulting From a Routine Immunization Program: Feasibility Study. Chandir S; Siddiqi DA; Hussain OA; Niazi T; Shah MT; Dharma VK; Habib A; Khan AJ JMIR Public Health Surveill; 2018 Sep; 4(3):e63. PubMed ID: 30181112 [TBL] [Abstract][Full Text] [Related]
80. Risk prediction model for in-hospital mortality in women with ST-elevation myocardial infarction: A machine learning approach. Mansoor H; Elgendy IY; Segal R; Bavry AA; Bian J Heart Lung; 2017; 46(6):405-411. PubMed ID: 28992993 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]