These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33283088)

  • 1. New Type of Similar Material for Simulating the Processes of Water Inrush from Roof Bed Separation.
    Wang Z; Zhang Q; Shao J; Zhang W; Wu X; Zhu X
    ACS Omega; 2020 Dec; 5(47):30405-30415. PubMed ID: 33283088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation on the Risk of Water Inrush Due to Roof Bed Separation Based on Improved Set Pair Analysis-Variable Fuzzy Sets.
    Li X; Zhang W; Wang X; Wang Z; Pang C
    ACS Omega; 2022 Mar; 7(11):9430-9442. PubMed ID: 35350366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the development patterns of water-conducting fracture zones under karst aquifers and the mechanism of water inrush.
    Zheng L; Wang X; Lan H; Ren W; Tian Y; Xu J; Tian S
    Sci Rep; 2024 Sep; 14(1):20790. PubMed ID: 39242957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS.
    Hu T; Hou G; Li Z
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved risk zoning method of bed-separation water inrush in underground coal mines: a case study in Ningxia, China.
    Li L; Li W; Zhou S; He J; Chen W; Wang Q
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57518-57528. PubMed ID: 36964810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seepage evolution characteristics and water inrush mechanism in collapse column under mining influence.
    Yongjiang W; Zhengzheng C; Zhenhua L; Feng D; Wenqiang W; Minglei Z; Zijie H; Yi X
    Sci Rep; 2024 Mar; 14(1):5862. PubMed ID: 38467665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine.
    Gao C; Wang D; Liu K; Deng G; Li J; Jie B
    ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction to "New Type of Similar Material for Simulating the Processes of Water Inrush from Roof Bed Separation".
    Wang Z; Zhang Q; Shao J; Zhang W; Wu X; Zhu X
    ACS Omega; 2021 Dec; 6(50):35144. PubMed ID: 34963995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rock Damage Model Coupled Stress-Seepage and Its Application in Water Inrush from Faults in Coal Mines.
    Shao J; Zhang W; Wu X; Lei Y; Wu X
    ACS Omega; 2022 Apr; 7(16):13604-13614. PubMed ID: 35559151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine.
    Zhu J; Li W; Teng B; Lu Q; Li D; Li L
    Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of roof water inrush forecasting based on EM-FAHP two-factor model.
    Liu W; Zheng Q; Pang L; Dou W; Meng X
    Math Biosci Eng; 2021 Jun; 18(5):4987-5005. PubMed ID: 34517474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear evolution characteristics and seepage mechanical model of fluids in broken rock mass based on the bifurcation theory.
    Yunlong J; Zhengzheng C; Zhenhua L; Feng D; Cunhan H; Haixiao L; Wenqiang W; Minglei Z
    Sci Rep; 2024 May; 14(1):10982. PubMed ID: 38744948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal modeling of water inrush spreading in mine roadway networks.
    Zhang X; Wu Q; Zhao Y; Liu S; Xu H
    Water Sci Technol; 2022 Feb; 85(3):872-886. PubMed ID: 35166707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on the seepage mutation of natural karst collapse pillar (KCP) fillings over mass outflow.
    Zhang B; Liu G; Li Y; Lin Z
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110995-111007. PubMed ID: 37798525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.