BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 33283185)

  • 1. The First Orally Deliverable Small Molecule for the Treatment of Spinal Muscular Atrophy.
    Singh RN; Ottesen EW; Singh NN
    Neurosci Insights; 2020; 15():2633105520973985. PubMed ID: 33283185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ISS-N1 makes the First FDA-approved Drug for Spinal Muscular Atrophy.
    Ottesen EW
    Transl Neurosci; 2017 Jan; 8():1-6. PubMed ID: 28400976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes.
    Singh RN; Singh NN
    Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antisense oligonucleotide mediated therapy of spinal muscular atrophy.
    Sivanesan S; Howell MD; Didonato CJ; Singh RN
    Transl Neurosci; 2013 Mar; 4(1):. PubMed ID: 24265944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA in spinal muscular atrophy: therapeutic implications of targeting.
    Singh RN; Seo J; Singh NN
    Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Risdiplam for the treatment of spinal muscular atrophy].
    Vlodavets DV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2024; 124(2):45-57. PubMed ID: 38465810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy.
    Singh NN; Howell MD; Androphy EJ; Singh RN
    Gene Ther; 2017 Sep; 24(9):520-526. PubMed ID: 28485722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.
    Singh NK; Singh NN; Androphy EJ; Singh RN
    Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial treatment for spinal muscular atrophy: An Editorial for 'Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells' on page 264.
    Poletti A; Fischbeck KH
    J Neurochem; 2020 Apr; 153(2):146-149. PubMed ID: 32056234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring SMN Expression: An Overview of the Therapeutic Developments for the Treatment of Spinal Muscular Atrophy.
    Aslesh T; Yokota T
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving concepts on human SMN pre-mRNA splicing.
    Singh RN
    RNA Biol; 2007; 4(1):7-10. PubMed ID: 17592254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Overview of the Therapeutic Strategies for the Treatment of Spinal Muscular Atrophy.
    Li Y; Zeng H; Wei Y; Ma X; He Z
    Hum Gene Ther; 2023 Mar; 34(5-6):180-191. PubMed ID: 36762938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Effect of an Antisense Oligonucleotide and Small Molecule on Splicing Correction of the Spinal Muscular Atrophy Gene.
    Ottesen EW; Singh RN
    Neurosci Insights; 2024; 19():26331055241233596. PubMed ID: 38379891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in Spinal Muscular Atrophy cells.
    Pagliarini V; Guerra M; Di Rosa V; Compagnucci C; Sette C
    J Neurochem; 2020 Apr; 153(2):264-275. PubMed ID: 31811660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal muscular atrophy: an update on therapeutic progress.
    Seo J; Howell MD; Singh NN; Singh RN
    Biochim Biophys Acta; 2013 Dec; 1832(12):2180-90. PubMed ID: 23994186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy.
    Son HW; Yokota T
    Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Context of a Critical Exon of Spinal Muscular Atrophy Gene.
    Singh NN; O'Leary CA; Eich T; Moss WN; Singh RN
    Front Mol Biosci; 2022; 9():928581. PubMed ID: 35847983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nusinersen in the Treatment of Spinal Muscular Atrophy.
    Goodkey K; Aslesh T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy.
    Singh NN; Lee BM; DiDonato CJ; Singh RN
    Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-based drug discovery for spinal muscular atrophy: a story of small molecules and antisense oligonucleotides.
    Torroba B; Macabuag N; Haisma EM; O'Neill A; Herva ME; Redis RS; Templin MV; Black LE; Fischer DF
    Expert Opin Drug Discov; 2023 Feb; 18(2):181-192. PubMed ID: 36408582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.