These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 33283323)
1. Covalency in Actinide Compounds. Pace KA; Klepov VV; Berseneva AA; Zur Loye HC Chemistry; 2021 Apr; 27(19):5835-5841. PubMed ID: 33283323 [TBL] [Abstract][Full Text] [Related]
2. On the Origin of Covalent Bonding in Heavy Actinides. Kelley MP; Su J; Urban M; Luckey M; Batista ER; Yang P; Shafer JC J Am Chem Soc; 2017 Jul; 139(29):9901-9908. PubMed ID: 28657317 [TBL] [Abstract][Full Text] [Related]
3. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Kaltsoyannis N Inorg Chem; 2013 Apr; 52(7):3407-13. PubMed ID: 22668004 [TBL] [Abstract][Full Text] [Related]
4. Uncovering Heavy Actinide Covalency: Implications for Minor Actinide Partitioning. Chandrasekar A; Ghanty TK Inorg Chem; 2019 Mar; 58(6):3744-3753. PubMed ID: 30821454 [TBL] [Abstract][Full Text] [Related]
5. Covalency in AnCp4 (An = Th-Cm): a comparison of molecular orbital, natural population and atoms-in-molecules analyses. Tassell MJ; Kaltsoyannis N Dalton Trans; 2010 Aug; 39(29):6719-25. PubMed ID: 20631951 [TBL] [Abstract][Full Text] [Related]
6. A computational investigation of orbital overlap versus energy degeneracy covalency in [UE Platts JA; Baker RJ Dalton Trans; 2020 Jan; 49(4):1077-1088. PubMed ID: 31868192 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Actinide(III) over Lanthanide(III) Selectivity through Hard-by-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency. Sadhu B; Dolg M Inorg Chem; 2019 Aug; 58(15):9738-9748. PubMed ID: 31343876 [TBL] [Abstract][Full Text] [Related]
9. The role of the 5f valence orbitals of early actinides in chemical bonding. Vitova T; Pidchenko I; Fellhauer D; Bagus PS; Joly Y; Pruessmann T; Bahl S; Gonzalez-Robles E; Rothe J; Altmaier M; Denecke MA; Geckeis H Nat Commun; 2017 Jul; 8():16053. PubMed ID: 28681848 [TBL] [Abstract][Full Text] [Related]
10. Contemporary Assessment of Energy Degeneracy in Orbital Mixing with Tetravalent f-Block Compounds. Pereiro FA; Galley SS; Jackson JA; Shafer JC Inorg Chem; 2024 May; 63(21):9687-9700. PubMed ID: 38743642 [TBL] [Abstract][Full Text] [Related]
11. Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Liu Y; Wang CZ; Wu QY; Lan JH; Chai ZF; Liu Q; Shi WQ Inorg Chem; 2020 Aug; 59(16):11469-11480. PubMed ID: 32799470 [TBL] [Abstract][Full Text] [Related]
12. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). Kelley MP; Deblonde GJ; Su J; Booth CH; Abergel RJ; Batista ER; Yang P Inorg Chem; 2018 May; 57(9):5352-5363. PubMed ID: 29624372 [TBL] [Abstract][Full Text] [Related]
13. Trends in covalency for d- and f-element metallocene dichlorides identified using chlorine K-edge X-ray absorption spectroscopy and time-dependent density functional theory. Kozimor SA; Yang P; Batista ER; Boland KS; Burns CJ; Clark DL; Conradson SD; Martin RL; Wilkerson MP; Wolfsberg LE J Am Chem Soc; 2009 Sep; 131(34):12125-36. PubMed ID: 19705913 [TBL] [Abstract][Full Text] [Related]
14. The Counterintuitive Relationship between Orbital Energy, Orbital Overlap, and Bond Covalency in CeF Branson JA; Smith PW; Sergentu DC; Russo DR; Gupta H; Booth CH; Arnold J; Schelter EJ; Autschbach J; Minasian SG J Am Chem Soc; 2024 Sep; 146(37):25640-25655. PubMed ID: 39241121 [TBL] [Abstract][Full Text] [Related]
15. Covalency in AnCl Cooper S; Kaltsoyannis N Dalton Trans; 2022 Apr; 51(15):5929-5937. PubMed ID: 35348160 [TBL] [Abstract][Full Text] [Related]
16. f-Orbital Mixing in the Octahedral f Edelstein NM; Lukens WW J Phys Chem A; 2020 May; 124(21):4253-4262. PubMed ID: 32354208 [TBL] [Abstract][Full Text] [Related]
17. Energy-Degeneracy-Driven Covalency in Actinide Bonding. Su J; Batista ER; Boland KS; Bone SE; Bradley JA; Cary SK; Clark DL; Conradson SD; Ditter AS; Kaltsoyannis N; Keith JM; Kerridge A; Kozimor SA; Löble MW; Martin RL; Minasian SG; Mocko V; La Pierre HS; Seidler GT; Shuh DK; Wilkerson MP; Wolfsberg LE; Yang P J Am Chem Soc; 2018 Dec; 140(51):17977-17984. PubMed ID: 30540455 [TBL] [Abstract][Full Text] [Related]
18. Importance of energy level matching for bonding in Th(3+)-Am(3+) actinide metallocene amidinates, (C(5)Me(5))(2)[(i)PrNC(Me)N(i)Pr]An. Walensky JR; Martin RL; Ziller JW; Evans WJ Inorg Chem; 2010 Nov; 49(21):10007-12. PubMed ID: 20883019 [TBL] [Abstract][Full Text] [Related]
19. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th-Cm; Cp = η(5)-C5H5). Kirker I; Kaltsoyannis N Dalton Trans; 2011 Jan; 40(1):124-31. PubMed ID: 21076767 [TBL] [Abstract][Full Text] [Related]
20. Periodic trends and complexation chemistry of tetravalent actinide ions with a potential actinide decorporation agent 5-LIO(Me-3,2-HOPO): A relativistic density functional theory exploration. Sadhu B; Dolg M; Kulkarni MS J Comput Chem; 2020 Jun; 41(15):1427-1435. PubMed ID: 32125003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]