These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33283395)

  • 1. Embedment of Quantum Dots and Biomolecules in a Dipeptide Hydrogel Formed In Situ Using Microfluidics.
    Li Y; Männel MJ; Hauck N; Patel HP; Auernhammer GK; Chae S; Fery A; Li J; Thiele J
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6724-6732. PubMed ID: 33283395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation.
    Li Y; Zheng T; Du Y; Zhao B; Patel HP; Boldt R; Auernhammer GK; Fery A; Li J; Thiele J
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):405-412. PubMed ID: 37852026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of supramolecular hydrogel microspheres via microfluidics.
    Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ
    Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic-driven ultrafast self-assembly of a dipeptide into stimuli-responsive 0D, 1D, and 2D nanostructures and as hydrolase mimic.
    Singh A; Joo JU; Kim DP
    Nanoscale; 2022 Oct; 14(40):15010-15020. PubMed ID: 36193959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical supramolecular spinning of nanofibers in a microfluidic channel: tuning nanostructures at a dynamic interface.
    Numata M; Takigami Y; Takayama M; Kozawa T; Hirose N
    Chemistry; 2012 Oct; 18(41):13008-17. PubMed ID: 22945551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme Instructed Self-assembly of Naphthalimide-dipeptide: Spontaneous Transformation from Nanosphere to Nanotubular Structures that Induces Hydrogelation.
    Chakravarthy RD; Mohammed M; Lin HC
    Chem Asian J; 2020 Sep; 15(17):2696-2705. PubMed ID: 32652888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Yao Y; Fan Y
    Biomed Microdevices; 2021 Sep; 23(4):47. PubMed ID: 34550472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Dipeptide-Protein Hydrogels through Schiff Base Coassembly.
    Yuan T; Fei J; Xu Y; Yang X; Li J
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28841256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Benzyl cysteine based cyclic dipeptide super hydrogelator: Enhancing efficacy of an anticancer drug via sustainable release.
    Ghosh S; Nag S; Saha KD; Banerji B
    J Pept Sci; 2022 Aug; 28(8):e3403. PubMed ID: 35001443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembly Dipeptide Hydrogel: The Structures and Properties.
    Li L; Xie L; Zheng R; Sun R
    Front Chem; 2021; 9():739791. PubMed ID: 34540806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized self-assembly of macroscopically structured supramolecular hydrogels through reaction-diffusion.
    Sun M; Bai S; Wang H; Li Z; Wang Y; Guo X
    Soft Matter; 2024 Jun; 20(24):4776-4782. PubMed ID: 38842423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipeptide-polysaccharides hydrogels through co-assembly.
    Hu T; Xu Y; Xu G
    Food Chem; 2023 Oct; 422():136272. PubMed ID: 37141751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Supramolecular Nanostructures through in Situ Self-Assembly and Post-Assembly Modification of a Biocatalytically Constructed Dipeptide Hydrazide.
    Shintani Y; Ohtomi T; Shibata A; Kitamura Y; Hirosawa KM; Suzuki KGN; Ikeda M
    Chemistry; 2022 Feb; 28(8):e202104421. PubMed ID: 34984747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing gelation ability for a library of dipeptide gelators.
    Awhida S; Draper ER; McDonald TO; Adams DJ
    J Colloid Interface Sci; 2015 Oct; 455():24-31. PubMed ID: 26047582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation.
    Chen L; Morris K; Laybourn A; Elias D; Hicks MR; Rodger A; Serpell L; Adams DJ
    Langmuir; 2010 Apr; 26(7):5232-42. PubMed ID: 19921840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.