BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33283422)

  • 1. Making a melanoma: Molecular and cellular changes underlying melanoma initiation.
    Darp R; Ceol C
    Pigment Cell Melanoma Res; 2021 Mar; 34(2):280-287. PubMed ID: 33283422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular pathogenesis of sporadic melanoma and melanoma-initiating cells.
    Kong Y; Kumar SM; Xu X
    Arch Pathol Lab Med; 2010 Dec; 134(12):1740-9. PubMed ID: 21128770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes.
    Köhler C; Nittner D; Rambow F; Radaelli E; Stanchi F; Vandamme N; Baggiolini A; Sommer L; Berx G; van den Oord JJ; Gerhardt H; Blanpain C; Marine JC
    Cell Stem Cell; 2017 Nov; 21(5):679-693.e6. PubMed ID: 29033351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular pathogenesis of cutaneous melanocytic neoplasms.
    Ibrahim N; Haluska FG
    Annu Rev Pathol; 2009; 4():551-79. PubMed ID: 19400696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanocyte Stem Cell Activation and Translocation Initiate Cutaneous Melanoma in Response to UV Exposure.
    Moon H; Donahue LR; Choi E; Scumpia PO; Lowry WE; Grenier JK; Zhu J; White AC
    Cell Stem Cell; 2017 Nov; 21(5):665-678.e6. PubMed ID: 29033353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis.
    Hyter S; Indra AK
    FEBS Lett; 2013 Mar; 587(6):529-41. PubMed ID: 23395795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis.
    Claps G; Cheli Y; Zhang T; Scortegagna M; Lau E; Kim H; Qi J; Li JL; James B; Dzung A; Levesque MP; Dummer R; Hayward NK; Bosenberg M; Brown KM; Ronai ZA
    Cell Rep; 2016 May; 15(9):1884-92. PubMed ID: 27210757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melanoma Risk and Melanocyte Biology.
    Bertrand JU; Steingrimsson E; Jouenne F; Bressac-de Paillerets B; Larue L
    Acta Derm Venereol; 2020 Jun; 100(11):adv00139. PubMed ID: 32346747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and Temporal Control of Murine Melanoma Initiation from Mutant Melanocyte Stem Cells.
    Moon H; Donahue LR; Kim D; An L; White AC
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31233013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tumor suppressor BAP1 cooperates with BRAFV600E to promote tumor formation in cutaneous melanoma.
    Webster JD; Pham TH; Wu X; Hughes NW; Li Z; Totpal K; Lee HJ; Calses PC; Chaurushiya MS; Stawiski EW; Modrusan Z; Chang MT; Tran C; Lee WP; Chalasani S; Hung J; Sharma N; Chan S; Hotzel K; Talevich E; Shain A; Xu M; Lill J; Dixit VM; Bastian BC; Dey A
    Pigment Cell Melanoma Res; 2019 Mar; 32(2):269-279. PubMed ID: 30156010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fibroblast growth factor-2 is not essential for melanoma formation in a transgenic mouse model.
    Ackermann J; Beermann F
    Pigment Cell Res; 2005 Aug; 18(4):315-9. PubMed ID: 16029424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterozygous loss of keratinocyte TRIM16 expression increases melanocytic cell lesions and lymph node metastasis.
    Sutton SK; Cheung BB; Massudi H; Tan O; Koach J; Mayoh C; Carter DR; Marshall GM
    J Cancer Res Clin Oncol; 2019 Sep; 145(9):2241-2250. PubMed ID: 31342168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress in melanocyte senescence and melanoma transformation.
    Meierjohann S
    Eur J Cell Biol; 2014; 93(1-2):36-41. PubMed ID: 24342719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.
    Maurus K; Hufnagel A; Geiger F; Graf S; Berking C; Heinemann A; Paschen A; Kneitz S; Stigloher C; Geissinger E; Otto C; Bosserhoff A; Schartl M; Meierjohann S
    Oncogene; 2017 Sep; 36(36):5110-5121. PubMed ID: 28481878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.
    Liu-Smith F; Jia J; Zheng Y
    Adv Exp Med Biol; 2017; 996():27-40. PubMed ID: 29124688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MITF pathway mutations in melanoma.
    Yokoyama S; Salma N; Fisher DE
    Pigment Cell Melanoma Res; 2009 Aug; 22(4):376-7. PubMed ID: 19558635
    [No Abstract]   [Full Text] [Related]  

  • 17. Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment.
    Seftor EA; Brown KM; Chin L; Kirschmann DA; Wheaton WW; Protopopov A; Feng B; Balagurunathan Y; Trent JM; Nickoloff BJ; Seftor RE; Hendrix MJ
    Cancer Res; 2005 Nov; 65(22):10164-9. PubMed ID: 16288000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma.
    Momtaz S; Niaz K; Maqbool F; Abdollahi M; Rastrelli L; Nabavi SM
    Biofactors; 2017 May; 43(3):347-370. PubMed ID: 27896891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Evolution of Melanoma - Moving beyond Binary Models of Genetic Progression.
    Zeng H; Judson-Torres RL; Shain AH
    J Invest Dermatol; 2020 Feb; 140(2):291-297. PubMed ID: 31623932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4.
    Diener J; Baggiolini A; Pernebrink M; Dalcher D; Lerra L; Cheng PF; Varum S; Häusel J; Stierli S; Treier M; Studer L; Basler K; Levesque MP; Dummer R; Santoro R; Cantù C; Sommer L
    Nat Commun; 2021 Aug; 12(1):5056. PubMed ID: 34417458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.