BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33283439)

  • 21. Trends in stabilisation of Criegee intermediates from alkene ozonolysis.
    Newland MJ; Nelson BS; Muñoz A; Ródenas M; Vera T; Tárrega J; Rickard AR
    Phys Chem Chem Phys; 2020 Jun; 22(24):13698-13706. PubMed ID: 32525165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Criegee intermediates in the indoor environment: new insights.
    Shallcross DE; Taatjes CA; Percival CJ
    Indoor Air; 2014 Oct; 24(5):495-502. PubMed ID: 24512513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heteroatom Tuning of Bimolecular Criegee Reactions and Its Implications.
    Kumar M; Francisco JS
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13432-13435. PubMed ID: 27678012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal.
    Xiao W; Sun S; Yan S; Wu W; Sun J
    Chemosphere; 2022 Sep; 303(Pt 3):135142. PubMed ID: 35636604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on ozonolysis of asymmetric alkenes with matrix isolation and FT-IR spectroscopy.
    Wang Z; Tong S; Chen M; Jing B; Li W; Guo Y; Ge M; Wang S
    Chemosphere; 2020 Aug; 252():126413. PubMed ID: 32197171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates.
    Karsili TNV; Marchetti B; Lester MI; Ashfold MNR
    Photochem Photobiol; 2023 Jan; 99(1):4-18. PubMed ID: 35713380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols.
    Hu M; Qiu J; Tonokura K; Enami S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4605-4614. PubMed ID: 33620039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronized Two-Color Time-Resolved Dual-Comb Spectroscopy for Quantitative Detection of HO
    Luo PL; Chen IY
    Anal Chem; 2022 Apr; 94(15):5752-5759. PubMed ID: 35377143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry.
    Long B; Bao JL; Truhlar DG
    Nat Commun; 2019 May; 10(1):2003. PubMed ID: 31043594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressure dependent mechanistic branching in the formation pathways of secondary organic aerosol from cyclic-alkene gas-phase ozonolysis.
    Wolf JL; Richters S; Pecher J; Zeuch T
    Phys Chem Chem Phys; 2011 Jun; 13(23):10952-64. PubMed ID: 21442094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfur dioxide oxidation induced mechanistic branching and particle formation during the ozonolysis of β-pinene and 2-butene.
    Carlsson PT; Keunecke C; Krüger BC; Maaß MC; Zeuch T
    Phys Chem Chem Phys; 2012 Dec; 14(45):15637-40. PubMed ID: 23090096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Criegee intermediates and their impacts on the troposphere.
    Khan MAH; Percival CJ; Caravan RL; Taatjes CA; Shallcross DE
    Environ Sci Process Impacts; 2018 Mar; 20(3):437-453. PubMed ID: 29480909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene.
    Bagchi A; Yu Y; Huang JH; Tsai CC; Hu WP; Wang CC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6528-6537. PubMed ID: 32091071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cycloalkene ozonolysis: collisionally mediated mechanistic branching.
    Chuong B; Zhang J; Donahue NM
    J Am Chem Soc; 2004 Oct; 126(39):12363-73. PubMed ID: 15453770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes.
    Zeng M; Wilson KR
    J Phys Chem Lett; 2020 Aug; 11(16):6580-6585. PubMed ID: 32787230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Competition between HO
    Chen L; Huang Y; Xue Y; Cao J; Wang W
    J Phys Chem A; 2017 Sep; 121(37):6981-6991. PubMed ID: 28835101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water.
    Long B; Bao JL; Truhlar DG
    J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.