These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33283439)

  • 61. Theoretical Study on Criegee Intermediate's Role in Ozonolysis of Acrylic Acid.
    Lin X; Meng Q; Feng B; Zhai Y; Li Y; Yu Y; Li Z; Shan X; Liu F; Zhang L; Sheng L
    J Phys Chem A; 2019 Mar; 123(10):1929-1936. PubMed ID: 30811197
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ozonolysis and photolysis of alkene-terminated self-assembled monolayers on quartz nanoparticles: implications for photochemical aging of organic aerosol particles.
    Park J; Gomez AL; Walser ML; Lin A; Nizkorodov SA
    Phys Chem Chem Phys; 2006 Jun; 8(21):2506-12. PubMed ID: 16721435
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study.
    Li L; Zhang R; Ma X; Wei Y; Zhao X; Zhang R; Xu F; Li Y; Huo X; Zhang Q; Wang W
    Chemosphere; 2021 Oct; 280():130709. PubMed ID: 34162082
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gas-phase ozonolysis of alkenes: formation of OH from anti carbonyl oxides.
    Kroll JH; Donahue NM; Cee VJ; Demerjian KL; Anderson JG
    J Am Chem Soc; 2002 Jul; 124(29):8518-9. PubMed ID: 12121079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Substituent Dependence on the Reactions of Criegee Intermediates with Carbon Dioxide and Carbon Monoxide.
    Takahashi K
    Chempluschem; 2023 Sep; 88(9):e202300354. PubMed ID: 37635074
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The reaction of Criegee intermediates with formamide and its implication to atmospheric aerosols.
    Wei Y; Zhang Q; Huo X; Wang W; Wang Q
    Chemosphere; 2022 Jun; 296():133717. PubMed ID: 35077731
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Insight into Chemistry on Cloud/Aerosol Water Surfaces.
    Zhong J; Kumar M; Francisco JS; Zeng XC
    Acc Chem Res; 2018 May; 51(5):1229-1237. PubMed ID: 29633837
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    J Phys Chem A; 2018 Aug; 122(30):6303-6310. PubMed ID: 29989413
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemistry of Functionalized Reactive Organic Intermediates in the Earth's Atmosphere: Impact, Challenges, and Progress.
    Barber VP; Kroll JH
    J Phys Chem A; 2021 Dec; 125(48):10264-10279. PubMed ID: 34846877
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces.
    Enami S; Colussi AJ
    J Phys Chem A; 2017 Jul; 121(27):5175-5182. PubMed ID: 28635281
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Criegee intermediate reaction with CO: mechanism, barriers, conformer-dependence, and implications for ozonolysis chemistry.
    Kumar M; Busch DH; Subramaniam B; Thompson WH
    J Phys Chem A; 2014 Mar; 118(10):1887-94. PubMed ID: 24527836
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Understanding the Early Biological Effects of Isoprene-Derived Particulate Matter Enhanced by Anthropogenic Pollutants.
    Surratt JD; Lin YH; Arashiro M; Vizuete WG; Zhang Z; Gold A; Jaspers I; Fry RC
    Res Rep Health Eff Inst; 2019 Mar; 2019(198):1-54. PubMed ID: 31872748
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry.
    Su YT; Lin HY; Putikam R; Matsui H; Lin MC; Lee YP
    Nat Chem; 2014 Jun; 6(6):477-83. PubMed ID: 24848232
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid.
    Enami S; Colussi AJ
    Phys Chem Chem Phys; 2017 Jul; 19(26):17044-17051. PubMed ID: 28643829
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.
    Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH
    J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atmospheric Chemistry of Enols: The Formation Mechanisms of Formic and Peroxyformic Acids in Ozonolysis of Vinyl Alcohol.
    Lei X; Wang W; Gao J; Wang S; Wang W
    J Phys Chem A; 2020 May; 124(21):4271-4279. PubMed ID: 32369366
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Simple and Efficient Method for Simulating the Electronic Absorption Spectra of Criegee Intermediates: Benchmarking on CH
    McCoy JC; Marchetti B; Thodika M; Karsili TNV
    J Phys Chem A; 2021 May; 125(19):4089-4097. PubMed ID: 33970629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.