These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 33283794)
1. Emerging on-chip surface acoustic wave technology for small biomaterials manipulation and characterization. Gao Y; Fajrial AK; Yang T; Ding X Biomater Sci; 2021 Mar; 9(5):1574-1582. PubMed ID: 33283794 [TBL] [Abstract][Full Text] [Related]
2. Surface acoustic wave manipulation of bioparticles. Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436 [TBL] [Abstract][Full Text] [Related]
3. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
4. Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lin SC; Mao X; Huang TJ Lab Chip; 2012 Aug; 12(16):2766-70. PubMed ID: 22781941 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate. Mei J; Zhang N; Friend J J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169 [TBL] [Abstract][Full Text] [Related]
6. Surface acoustic wave (SAW) techniques in tissue engineering. Jiang D; Liu J; Pan Y; Zhuang L; Wang P Cell Tissue Res; 2021 Nov; 386(2):215-226. PubMed ID: 34390407 [TBL] [Abstract][Full Text] [Related]
7. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
9. Surface acoustic wave microfluidics. Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527 [TBL] [Abstract][Full Text] [Related]
10. Development and characterisation of acoustofluidic devices using detachable electrodes made from PCB. Mikhaylov R; Wu F; Wang H; Clayton A; Sun C; Xie Z; Liang D; Dong Y; Yuan F; Moschou D; Wu Z; Shen MH; Yang J; Fu Y; Yang Z; Burton C; Errington RJ; Wiltshire M; Yang X Lab Chip; 2020 May; 20(10):1807-1814. PubMed ID: 32319460 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Wang Z; Zhe J Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739 [TBL] [Abstract][Full Text] [Related]
12. Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing. Devendran C; Choi K; Han J; Ai Y; Neild A; Collins DJ Lab Chip; 2020 Aug; 20(15):2674-2688. PubMed ID: 32608464 [TBL] [Abstract][Full Text] [Related]
18. Thermal Control Design and Packaging for Surface Acoustic Wave Devices in Acoustofluidics. Han J; Yang F; Hu H; Huang Q; Lei Y; Li M IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):386-398. PubMed ID: 34329161 [TBL] [Abstract][Full Text] [Related]