These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33283889)

  • 1. Optimization of a calibration phantom for quantitative radiography.
    Martinez C; de Molina C; Desco M; Abella M
    Med Phys; 2021 Mar; 48(3):1039-1053. PubMed ID: 33283889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing dual-energy x-ray parameters for the ExacTrac clinical stereoscopic imaging system to enhance soft-tissue imaging.
    Bowman WA; Robar JL; Sattarivand M
    Med Phys; 2017 Mar; 44(3):823-831. PubMed ID: 28060412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for selective tissue and bone visualization using dual energy scanned projection radiography.
    Brody WR; Butt G; Hall A; Macovski A
    Med Phys; 1981; 8(3):353-7. PubMed ID: 7033756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical dual energy calibration (EDEC) for cone-beam computed tomography.
    Stenner P; Berkus T; Kachelriess M
    Med Phys; 2007 Sep; 34(9):3630-41. PubMed ID: 17926967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive weighted log subtraction based on neural networks for markerless tumor tracking using dual-energy fluoroscopy.
    Haytmyradov M; Mostafavi H; Cassetta R; Patel R; Surucu M; Zhu L; Roeske JC
    Med Phys; 2020 Feb; 47(2):672-680. PubMed ID: 31797397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets.
    Jaffray DA; Drake DG; Moreau M; Martinez AA; Wong JW
    Int J Radiat Oncol Biol Phys; 1999 Oct; 45(3):773-89. PubMed ID: 10524434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of technical and biological parameters of volumetric quantitative computed tomography of the foot: a phantom study.
    Smith KE; Whiting BR; Reiker GG; Commean PK; Sinacore DR; Prior FW
    Osteoporos Int; 2012 Jul; 23(7):1977-85. PubMed ID: 22147208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray imaging technique for in vitro tissue composition measurements using saline/iodine displacement: experimental verification.
    Moreau M; Dunmore-Buyze PJ; Holdsworth DW; Fenster A
    Med Phys; 1997 Mar; 24(3):351-60. PubMed ID: 9089586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of the
    Da Silva E; Pejović-Milić A
    Physiol Meas; 2017 Jun; 38(6):1077-1093. PubMed ID: 28248197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion.
    Lin Y; Samei E
    Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic bias in basis material decomposition applied to quantitative dual-energy x-ray imaging.
    Gingold EL; Hasegawa BH
    Med Phys; 1992; 19(1):25-33. PubMed ID: 1620055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study.
    Pandey P; Guy P; Hodgson AJ; Abugharbieh R
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1515-1524. PubMed ID: 29804181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology.
    Sanada S; Kawahara K; Yamamoto T; Takashima T
    Phys Med Biol; 1999 Jun; 44(6):N107-12. PubMed ID: 10498506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel phantom for characterization of dual energy imaging using an on-board imaging system.
    Haytmyradov M; Patel R; Mostafavi H; Surucu M; Wang A; Harkenrider MM; Roeske JC
    Phys Med Biol; 2019 Jan; 64(3):03NT01. PubMed ID: 30566913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of chest dual-energy subtraction digital tomosynthesis imaging and dual-energy subtraction radiography to detect simulated pulmonary nodules with and without calcifications a phantom study.
    Gomi T; Nakajima M; Fujiwara H; Umeda T
    Acad Radiol; 2011 Feb; 18(2):191-6. PubMed ID: 21232683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dedicated phantom materials for spectral radiography and CT.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1575-93. PubMed ID: 22397927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.