BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 33284002)

  • 1. Application of Multiplexed Aptasensors in Food Contaminants Detection.
    Zhang K; Li H; Wang W; Cao J; Gan N; Han H
    ACS Sens; 2020 Dec; 5(12):3721-3738. PubMed ID: 33284002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification.
    Zhang N; Li J; Liu B; Zhang D; Zhang C; Guo Y; Chu X; Wang W; Wang H; Yan X; Li Z
    Talanta; 2022 Jan; 236():122866. PubMed ID: 34635248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aptasensors for mycotoxins in foods: Recent advances and future trends.
    Hou Y; Jia B; Sheng P; Liao X; Shi L; Fang L; Zhou L; Kong W
    Compr Rev Food Sci Food Saf; 2022 Mar; 21(2):2032-2073. PubMed ID: 34729895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials.
    Goud KY; Reddy KK; Satyanarayana M; Kummari S; Gobi KV
    Mikrochim Acta; 2019 Dec; 187(1):29. PubMed ID: 31813061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in Design Strategies of Multiplex Electrochemical Aptasensors.
    Grabowska I; Hepel M; Kurzątkowska-Adaszyńska K
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins.
    Lei Z; Lei P; Guo J; Wang Z
    Talanta; 2022 Oct; 248():123607. PubMed ID: 35661001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nucleic acid signal amplification-based aptasensors for sensing mycotoxins.
    Zhang D; Luo T; Cai X; Zhao NN; Zhang CY
    Chem Commun (Camb); 2024 Apr; 60(36):4745-4764. PubMed ID: 38647208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid.
    Zhang N; Liu B; Cui X; Li Y; Tang J; Wang H; Zhang D; Li Z
    Talanta; 2021 Feb; 223(Pt 1):121729. PubMed ID: 33303172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress and challenges in electrochemiluminescent aptasensors.
    Muzyka K; Saqib M; Liu Z; Zhang W; Xu G
    Biosens Bioelectron; 2017 Jun; 92():241-258. PubMed ID: 28231552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization.
    Li J; Liu B; Liu L; Zhang N; Liao Y; Zhao C; Cao M; Zhong Y; Chai D; Chen X; Zhang D; Wang H; He Y; Li Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121872. PubMed ID: 36152504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical aptamer-based sensors for food and water analysis: A review.
    Li F; Yu Z; Han X; Lai RY
    Anal Chim Acta; 2019 Mar; 1051():1-23. PubMed ID: 30661605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Nanomaterial-Based Optical Aptamer Assay for the Detection of Food Chemical Contaminants.
    Lan L; Yao Y; Ping J; Ying Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23287-23301. PubMed ID: 28632380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-based microfluidic aptasensors.
    Ming T; Luo J; Liu J; Sun S; Xing Y; Wang H; Xiao G; Deng Y; Cheng Y; Yang Z; Jin H; Cai X
    Biosens Bioelectron; 2020 Dec; 170():112649. PubMed ID: 33022516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles-assisted aptamer biosensing for the detection of environmental pathogens.
    Rahimizadeh K; Zahra QUA; Chen S; Le BT; Ullah I; Veedu RN
    Environ Res; 2023 Dec; 238(Pt 1):117123. PubMed ID: 37717803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterial-based aptamer sensors for arsenic detection.
    Mao K; Zhang H; Wang Z; Cao H; Zhang K; Li X; Yang Z
    Biosens Bioelectron; 2020 Jan; 148():111785. PubMed ID: 31689596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of nuclease-based target recycling signal amplification in aptasensors.
    Yan M; Bai W; Zhu C; Huang Y; Yan J; Chen A
    Biosens Bioelectron; 2016 Mar; 77():613-23. PubMed ID: 26485175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in nanoparticle based aptasensors for food contaminants.
    Sharma R; Ragavan KV; Thakur MS; Raghavarao KS
    Biosens Bioelectron; 2015 Dec; 74():612-27. PubMed ID: 26190473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical aptasensors for contaminants detection in food and environment: Recent advances.
    Rapini R; Marrazza G
    Bioelectrochemistry; 2017 Dec; 118():47-61. PubMed ID: 28715665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-based environmental biosensors for small molecule contaminants.
    Nguyen VT; Kwon YS; Gu MB
    Curr Opin Biotechnol; 2017 Jun; 45():15-23. PubMed ID: 28088092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.