These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33284411)

  • 21. Dual function of OmpM as outer membrane tether and nutrient uptake channel in diderm Firmicutes.
    Silale A; Zhu Y; Witwinowski J; Smith RE; Newman KE; Bhamidimarri SP; Baslé A; Khalid S; Beloin C; Gribaldo S; van den Berg B
    Nat Commun; 2023 Nov; 14(1):7152. PubMed ID: 37932269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.
    Sousa FL; Shavit-Grievink L; Allen JF; Martin WF
    Genome Biol Evol; 2013; 5(1):200-16. PubMed ID: 23258841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sporulation, bacterial cell envelopes and the origin of life.
    Tocheva EI; Ortega DR; Jensen GJ
    Nat Rev Microbiol; 2016 Aug; 14(8):535-542. PubMed ID: 28232669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event?
    Sato N
    J Plant Res; 2020 Jan; 133(1):15-33. PubMed ID: 31811433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gram-positive bacteria: possible photosynthetic ancestry.
    Woese CR; Debrunner-Vossbrinck BA; Oyaizu H; Stackebrandt E; Ludwig W
    Science; 1985; 229():762-5. PubMed ID: 11539659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era.
    Thiel V; Tank M; Bryant DA
    Annu Rev Plant Biol; 2018 Apr; 69():21-49. PubMed ID: 29505738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war.
    Sutcliffe IC
    Environ Microbiol; 2011 Feb; 13(2):279-82. PubMed ID: 20860732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of conjugation and type IV secretion systems.
    Guglielmini J; de la Cruz F; Rocha EP
    Mol Biol Evol; 2013 Feb; 30(2):315-31. PubMed ID: 22977114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel insights into the origin and diversification of photosynthesis based on analyses of conserved indels in the core reaction center proteins.
    Khadka B; Adeolu M; Blankenship RE; Gupta RS
    Photosynth Res; 2017 Feb; 131(2):159-171. PubMed ID: 27638319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anoxygenic phototroph of the Chloroflexota uses a type I reaction centre.
    Tsuji JM; Shaw NA; Nagashima S; Venkiteswaran JJ; Schiff SL; Watanabe T; Fukui M; Hanada S; Tank M; Neufeld JD
    Nature; 2024 Mar; 627(8005):915-922. PubMed ID: 38480893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Rich Tapestry of Bacterial Protein Translocation Systems.
    Christie PJ
    Protein J; 2019 Aug; 38(4):389-408. PubMed ID: 31407127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of heliobacteria: implications for photosynthetic reaction center complexes.
    Vermaas WF
    Photosynth Res; 1994; 41():285-94. PubMed ID: 11539188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
    Gupta RS
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1435-91. PubMed ID: 9841678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dichotomy of major bacterial phyla inferred from gene arrangement comparisons.
    Kunisawa T
    J Theor Biol; 2006 Apr; 239(3):367-75. PubMed ID: 16159660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):7-76. PubMed ID: 11837318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early Archean origin of Photosystem II.
    Cardona T; Sánchez-Baracaldo P; Rutherford AW; Larkum AW
    Geobiology; 2019 Mar; 17(2):127-150. PubMed ID: 30411862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes.
    Gupta RS; Bustard K; Falah M; Singh D
    J Bacteriol; 1997 Jan; 179(2):345-57. PubMed ID: 8990285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.
    Gupta RS
    Mol Biol Evol; 2012 Nov; 29(11):3397-412. PubMed ID: 22628531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monoderm bacteria: the new frontier for type IV pilus biology.
    Pelicic V
    Mol Microbiol; 2019 Dec; 112(6):1674-1683. PubMed ID: 31556183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.