These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33284665)

  • 1. Changes in the physiological and biochemical state of peanut plants (
    Santos-Espinoza AM; González-Mendoza D; Ruiz-Valdiviezo VM; Luján-Hidalgo MC; Jonapa-Hernández F; Valdez-Salas B; Gutiérrez-Miceli FA
    Int J Phytoremediation; 2021; 23(7):747-754. PubMed ID: 33284665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings.
    Jurkow R; Pokluda R; Sękara A; Kalisz A
    BMC Plant Biol; 2020 Jun; 20(1):290. PubMed ID: 32576147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).
    Rui M; Ma C; Hao Y; Guo J; Rui Y; Tang X; Zhao Q; Fan X; Zhang Z; Hou T; Zhu S
    Front Plant Sci; 2016; 7():815. PubMed ID: 27375665
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Danish M; Shahid M; Zeyad MT; Bukhari NA; Al-Khattaf FS; Hatamleh AA; Ali S
    ACS Omega; 2022 Apr; 7(16):13878-13893. PubMed ID: 35559145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure of tomato (
    Noori A; Donnelly T; Colbert J; Cai W; Newman LA; White JC
    Int J Phytoremediation; 2020; 22(1):40-51. PubMed ID: 31282192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.).
    Pruthvi V; Narasimhan R; Nataraja KN
    PLoS One; 2014; 9(12):e111152. PubMed ID: 25474740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of gibberellic acid on growth, biomass, and antioxidant defense system of wheat (Triticum aestivum L.) under cerium oxide nanoparticle stress.
    Iftikhar A; Rizwan M; Adrees M; Ali S; Ur Rehman MZ; Qayyum MF; Hussain A
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):33809-33820. PubMed ID: 32535824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Final report on the safety assessment of Peanut (Arachis hypogaea) Oil, Hydrogenated Peanut Oil, Peanut Acid, Peanut Glycerides, and Peanut (Arachis hypogaea) Flour.
    Int J Toxicol; 2001; 20 Suppl 2():65-77. PubMed ID: 11558642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Physiological responses of different peanut (Arachis hypogaea L.) varieties to cadmium stress].
    Liu WL; Wang KR; Wang ML
    Ying Yong Sheng Tai Xue Bao; 2009 Feb; 20(2):451-9. PubMed ID: 19459390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study.
    Yang J; Jiang F; Ma C; Rui Y; Rui M; Adeel M; Cao W; Xing B
    J Agric Food Chem; 2018 Mar; 66(11):2589-2597. PubMed ID: 29451784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological impacts of zero valent iron, Fe
    Li M; Zhang P; Adeel M; Guo Z; Chetwynd AJ; Ma C; Bai T; Hao Y; Rui Y
    Environ Pollut; 2021 Jan; 269():116134. PubMed ID: 33290949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fe
    Moradbeygi H; Jamei R; Heidari R; Darvishzadeh R
    Physiol Plant; 2020 Aug; 169(4):555-570. PubMed ID: 32065661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priming With the Green Leaf Volatile (Z)-3-Hexeny-1-yl Acetate Enhances Salinity Stress Tolerance in Peanut (
    Tian S; Guo R; Zou X; Zhang X; Yu X; Zhan Y; Ci D; Wang M; Wang Y; Si T
    Front Plant Sci; 2019; 10():785. PubMed ID: 31333683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium deficiency stress tolerance in peanut (Arachis hypogaea) through ion homeostasis, activation of antioxidant defense, and metabolic dynamics: Alleviatory role of silicon supplementation.
    Patel M; Fatnani D; Parida AK
    Plant Physiol Biochem; 2022 Jul; 182():55-75. PubMed ID: 35468526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure.
    Wang Y; Hu J; Dai Z; Li J; Huang J
    Plant Physiol Biochem; 2016 Nov; 108():353-360. PubMed ID: 27518375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings.
    Dinakar N; Nagajyothi PC; Suresh S; Udaykiran Y; Damodharam T
    J Environ Sci (China); 2008; 20(2):199-206. PubMed ID: 18574962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review.
    Rizwan M; Ali S; Qayyum MF; Ok YS; Adrees M; Ibrahim M; Zia-Ur-Rehman M; Farid M; Abbas F
    J Hazard Mater; 2017 Jan; 322(Pt A):2-16. PubMed ID: 27267650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress.
    Liu X; Li L; Zhang B; Zeng L; Li L
    Plant Sci; 2020 May; 294():110461. PubMed ID: 32234234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants.
    Hernández-Hernández H; Quiterio-Gutiérrez T; Cadenas-Pliego G; Ortega-Ortiz H; Hernández-Fuentes AD; Cabrera de la Fuente M; Valdés-Reyna J; Juárez-Maldonado A
    Plants (Basel); 2019 Sep; 8(10):. PubMed ID: 31546997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology.
    Ahmad A; Hashmi SS; Palma JM; Corpas FJ
    Chemosphere; 2022 Mar; 290():133329. PubMed ID: 34922969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.