BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33284814)

  • 1. A proteomic analysis of peanut seed at different stages of underground development to understand the changes of seed proteins.
    Li H; Liang X; Zhou B; Chen X; Hong Y; Zhou R; Li S; Liu H; Lu Q; Liu H; Wu H
    PLoS One; 2020; 15(12):e0243132. PubMed ID: 33284814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut (
    Liu H; Li H; Gu J; Deng L; Ren L; Hong Y; Lu Q; Chen X; Liang X
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29670063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ITRAQ-Based Proteomic Analysis of the Metabolic Mechanisms Behind Lipid Accumulation and Degradation during Peanut Seed Development and Postgermination.
    Wang Y; Ma X; Zhang X; He X; Li H; Cui D; Yin D
    J Proteome Res; 2016 Dec; 15(12):4277-4289. PubMed ID: 27669742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L).
    Wang T; Zhang E; Chen X; Li L; Liang X
    BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.
    Liu H; Wang C; Komatsu S; He M; Liu G; Shen S
    J Proteomics; 2013 Oct; 91():23-40. PubMed ID: 23835435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox
    Sghaier-Hammami B; B M Hammami S; Baazaoui N; Gómez-Díaz C; Jorrín-Novo JV
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32660160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of peanut seed storage proteins and genetic variation in a potential peanut allergen.
    Guo B; Liang X; Chung SY; Holbrook CC; Maleki SJ
    Protein Pept Lett; 2008; 15(6):567-77. PubMed ID: 18680451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteomic analysis of seed development in Brassica campestri L.
    Li W; Gao Y; Xu H; Zhang Y; Wang J
    PLoS One; 2012; 7(11):e50290. PubMed ID: 23189193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut.
    Wang Z; Yan L; Wan L; Huai D; Kang Y; Shi L; Jiang H; Lei Y; Liao B
    BMC Genomics; 2019 Jan; 20(1):51. PubMed ID: 30651065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A label-free shotgun proteomics analysis of macadamia nut.
    Rost J; Muralidharan S; Lee NA
    Food Res Int; 2020 Mar; 129():108838. PubMed ID: 32036921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New features of triacylglycerol biosynthetic pathways of peanut seeds in early developmental stages.
    Yu M; Liu F; Zhu W; Sun M; Liu J; Li X
    Funct Integr Genomics; 2015 Nov; 15(6):707-16. PubMed ID: 26071211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and spatial expression of the major allergens in developing and germinating peanut seed.
    Kang IH; Srivastava P; Ozias-Akins P; Gallo M
    Plant Physiol; 2007 Jun; 144(2):836-45. PubMed ID: 17468222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins.
    Zhu W; Zhang E; Li H; Chen X; Zhu F; Hong Y; Liao B; Liu S; Liang X
    J Proteomics; 2013 Oct; 91():172-87. PubMed ID: 23851312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways.
    Yin D; Wang Y; Zhang X; Li H; Lu X; Zhang J; Zhang W; Chen S
    PLoS One; 2013; 8(9):e73767. PubMed ID: 24040062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis of longan (Dimocarpus longan Lour.) seed abortion.
    Liu H; Liu YZ; Zheng SQ; Jiang JM; Wang P; Chen W
    Planta; 2010 Mar; 231(4):847-60. PubMed ID: 20049611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination.
    Xu P; Tang G; Cui W; Chen G; Ma CL; Zhu J; Li P; Shan L; Liu Z; Wan S
    PLoS One; 2020; 15(1):e0219413. PubMed ID: 31899920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic Analysis of Tung Tree (Vernicia fordii) Oilseeds during the Developmental Stages.
    Zhan Z; Chen Y; Shockey J; Han X; Wang Y
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27834836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution and identification of major peanut allergens using a combination of fluorescence two-dimensional differential gel electrophoresis, Western blotting and Q-TOF mass spectrometry.
    Chassaigne H; Trégoat V; Nørgaard JV; Maleki SJ; van Hengel AJ
    J Proteomics; 2009 Apr; 72(3):511-26. PubMed ID: 19223023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protamine sulfate precipitation method depletes abundant plant seed-storage proteins: A case study on legume plants.
    Kim YJ; Wang Y; Gupta R; Kim SW; Min CW; Kim YC; Park KH; Agrawal GK; Rakwal R; Choung MG; Kang KY; Kim ST
    Proteomics; 2015 May; 15(10):1760-4. PubMed ID: 25641780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteome of seed development in the model legume Lotus japonicus.
    Dam S; Laursen BS; Ornfelt JH; Jochimsen B; Staerfeldt HH; Friis C; Nielsen K; Goffard N; Besenbacher S; Krusell L; Sato S; Tabata S; Thøgersen IB; Enghild JJ; Stougaard J
    Plant Physiol; 2009 Mar; 149(3):1325-40. PubMed ID: 19129418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.