BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33284814)

  • 21. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis.
    Hajduch M; Casteel JE; Hurrelmeyer KE; Song Z; Agrawal GK; Thelen JJ
    Plant Physiol; 2006 May; 141(1):32-46. PubMed ID: 16543413
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings.
    Romero-Rodríguez MC; Jorrín-Novo JV; Castillejo MA
    J Proteomics; 2019 Apr; 197():60-70. PubMed ID: 30408563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomics analysis reveals differentially activated pathways that operate in peanut gynophores at different developmental stages.
    Zhao C; Zhao S; Hou L; Xia H; Wang J; Li C; Li A; Li T; Zhang X; Wang X
    BMC Plant Biol; 2015 Aug; 15():188. PubMed ID: 26239120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The cDNA cloning of conarachin gene and its expression in developing peanut seeds].
    Wang L; Yan YS; Liao B; Lin XD; Huang SZ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):107-10. PubMed ID: 15692187
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and transcriptional characterization of phosphatidyl ethanolamine-binding proteins in wild peanuts Arachis duranensis and Arachis ipaensis.
    Jin H; Tang X; Xing M; Zhu H; Sui J; Cai C; Li S
    BMC Plant Biol; 2019 Nov; 19(1):484. PubMed ID: 31706291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
    Wang X; Zhang A; Sun H; Wu G; Sun W; Yan G
    Analyst; 2012 Oct; 137(20):4703-11. PubMed ID: 22950079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks.
    Gupta K; Kayam G; Faigenboim-Doron A; Clevenger J; Ozias-Akins P; Hovav R
    Plant Sci; 2016 Jul; 248():116-27. PubMed ID: 27181953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes of Seed Weight, Fatty Acid Composition, and Oil and Protein Contents from Different Peanut FAD2 Genotypes at Different Seed Developmental and Maturation Stages.
    Wang ML; Chen CY; Tonnis B; Pinnow D; Davis J; An YC; Dang P
    J Agric Food Chem; 2018 Apr; 66(14):3658-3665. PubMed ID: 29558122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of the endoplasmic reticulum from developing and germinating seed of castor (Ricinus communis).
    Maltman DJ; Simon WJ; Wheeler CH; Dunn MJ; Wait R; Slabas AR
    Electrophoresis; 2002 Feb; 23(4):626-39. PubMed ID: 11870775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database.
    Hajduch M; Ganapathy A; Stein JW; Thelen JJ
    Plant Physiol; 2005 Apr; 137(4):1397-419. PubMed ID: 15824287
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gel-based comparative phosphoproteomic analysis on rice embryo during germination.
    Han C; Wang K; Yang P
    Plant Cell Physiol; 2014 Aug; 55(8):1376-94. PubMed ID: 24793751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Len c 1, a major allergen and vicilin from lentil seeds: protein isolation and cDNA cloning.
    López-Torrejón G; Salcedo G; Martín-Esteban M; Díaz-Perales A; Pascual CY; Sánchez-Monge R
    J Allergy Clin Immunol; 2003 Dec; 112(6):1208-15. PubMed ID: 14657885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.
    Barvkar VT; Pardeshi VC; Kale SM; Kadoo NY; Giri AP; Gupta VS
    J Proteome Res; 2012 Dec; 11(12):6264-76. PubMed ID: 23153172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Novel Proteins from Black Cumin Seed Meals Based on 2D Gel Electrophoresis and MALDI-TOF/TOF-MS Analysis.
    Çakir B; Gülseren İ
    Plant Foods Hum Nutr; 2019 Sep; 74(3):414-420. PubMed ID: 31278561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic identification of gravitropic response genes in peanut gynophores.
    Li HF; Zhu FH; Li HY; Zhu W; Chen XP; Hong YB; Liu HY; Wu H; Liang XQ
    J Proteomics; 2013 Nov; 93():303-13. PubMed ID: 23994445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic response of wheat embryos to fosthiazate stress in a protected vegetable soil.
    Yin C; Teng Y; Luo Y; Christie P
    J Environ Sci (China); 2012; 24(10):1843-53. PubMed ID: 23520855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut.
    Shivaraj SM; Deshmukh R; Sonah H; Bélanger RR
    BMC Genomics; 2019 Mar; 20(1):222. PubMed ID: 30885116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide identification of circular RNAs in peanut (Arachis hypogaea L.).
    Zhang X; Ma X; Ning L; Li Z; Zhao K; Li K; He J; Yin D
    BMC Genomics; 2019 Aug; 20(1):653. PubMed ID: 31416415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrated microRNA and transcriptome profiling reveals a miRNA-mediated regulatory network of embryo abortion under calcium deficiency in peanut (Arachis hypogaea L.).
    Chen H; Yang Q; Chen K; Zhao S; Zhang C; Pan R; Cai T; Deng Y; Wang X; Chen Y; Chu W; Xie W; Zhuang W
    BMC Genomics; 2019 May; 20(1):392. PubMed ID: 31113378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GeLC-Orbitrap/MS and 2-DE-MALDI-TOF/TOF comparative proteomics analysis of seed cotyledons from the non-orthodox Quercus ilex tree species.
    Sghaier-Hammami B; Castillejo MÁ; Baazaoui N; Jorrín-Novo JV; Escandón M
    J Proteomics; 2021 Feb; 233():104087. PubMed ID: 33359940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.