These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 33285324)

  • 1. Recent progress in engineering functional biohybrid robots actuated by living cells.
    Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D
    Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofabrication of Living Actuators.
    Raman R
    Annu Rev Biomed Eng; 2024 Jul; 26(1):223-245. PubMed ID: 38959387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohybrid robotics with living cell actuation.
    Sun L; Yu Y; Chen Z; Bian F; Ye F; Sun L; Zhao Y
    Chem Soc Rev; 2020 Jun; 49(12):4043-4069. PubMed ID: 32417875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohybrid soft robots with self-stimulating skeletons.
    Guix M; Mestre R; Patiño T; De Corato M; Fuentes J; Zarpellon G; Sánchez S
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Living Materials Herald a New Era in Soft Robotics.
    Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C
    Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohybrid robots: recent progress, challenges, and perspectives.
    Webster-Wood VA; Guix M; Xu NW; Behkam B; Sato H; Sarkar D; Sanchez S; Shimizu M; Parker KK
    Bioinspir Biomim; 2022 Nov; 18(1):. PubMed ID: 36265472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots.
    Umedachi T; Vikas V; Trimmer BA
    Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamorphosis in Insect Muscle: Insights for Engineering Muscle-Based Actuators.
    Ludwig JC; Trimmer BA
    Tissue Eng Part B Rev; 2021 Aug; 27(4):330-340. PubMed ID: 33012237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues.
    Morita K; Morimoto Y; Takeuchi S
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohybrid actuators for robotics: A review of devices actuated by living cells.
    Ricotti L; Trimmer B; Feinberg AW; Raman R; Parker KK; Bashir R; Sitti M; Martel S; Dario P; Menciassi A
    Sci Robot; 2017 Nov; 2(12):. PubMed ID: 33157905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.
    Duffy RM; Feinberg AW
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):178-95. PubMed ID: 24319010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-actuator light-controlled biological robots.
    Wang J; Wang Y; Kim Y; Yu T; Bashir R
    APL Bioeng; 2022 Sep; 6(3):036103. PubMed ID: 36035771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties.
    Tetsuka H; Pirrami L; Wang T; Demarchi D; Shin SR
    Adv Funct Mater; 2022 Aug; 32(31):. PubMed ID: 36313126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini-Review on Fabrication Techniques, Applications, and Challenges.
    Sun W; Schaffer S; Dai K; Yao L; Feinberg A; Webster-Wood V
    Front Robot AI; 2021; 8():673533. PubMed ID: 33996931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design.
    Raman R; Bashir R
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28881469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities.
    Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C
    Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications.
    Dong X; Luo X; Zhao H; Qiao C; Li J; Yi J; Yang L; Oropeza FJ; Hu TS; Xu Q; Zeng H
    Soft Matter; 2022 Oct; 18(40):7699-7734. PubMed ID: 36205123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.
    Ando N; Kanzaki R
    Arthropod Struct Dev; 2017 Sep; 46(5):723-735. PubMed ID: 28254451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological Soft Robotics.
    Feinberg AW
    Annu Rev Biomed Eng; 2015; 17():243-65. PubMed ID: 26643022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.